Classification of Similar Objects of Different Sizes Using a Reference Object by Means of Convolutional Neural Networks

被引:0
|
作者
Lehr, Jan [1 ]
Schlueter, Marian [1 ]
Krueger, Joerg [2 ]
机构
[1] Fraunhofer IPK, Div Automat Technol, Berlin, Germany
[2] Tech Univ Berlin, Div Ind Automat Technol, Berlin, Germany
关键词
Machine Vision; Part Identification; Deep Learning; Convolutional Neural Networks;
D O I
10.1109/etfa.2019.8869120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Part identification is relevant in many industrial applications, either for direct recognition of components or assemblies, either as a fully automated process or as an assistance system. Convolutional Neural Networks (CNNs) have proven their worth in image processing, especially in classification tasks. It therefore makes sense to use them for industrial applications. There are major problems with parts that look very similar and can only be identified by their size. In this paper we have considered a subset of screws that all conform to the same norm but are of different sizes. The implicit learning of the screw size is only possible if the images are taken in a fixed distance setup and larger screws are shown larger on the images. In this paper we show that CNNs are able to implicitly measure target objects with the help of reference objects and thus to integrate the object size into the learning process.
引用
收藏
页码:1519 / 1522
页数:4
相关论文
共 50 条
  • [21] Marine Objects Recognition Using Convolutional Neural Networks
    Lorencin, Ivan
    Andelic, Nikola
    Mrzljak, Vedran
    Car, Zlatan
    NASE MORE, 2019, 66 (03): : 112 - 119
  • [22] Plant Classification using Convolutional Neural Networks
    Yalcin, Hulya
    Razavi, Salar
    2016 FIFTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2016, : 233 - 237
  • [23] Sound Classification Using Convolutional Neural Networks
    Jaiswal, Kaustumbh
    Patel, Dhairya Kalpeshbhai
    2018 SEVENTH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING IN EMERGING MARKETS (CCEM), 2018, : 81 - 84
  • [24] Strabismus Classification using Convolutional Neural Networks
    Kim, Donghwan
    Joo, Jaehan
    Zhu, Guohua
    Seo, Jeongbin
    Ha, Jaeseung
    Kim, Suk Chan
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 216 - 218
  • [25] Query Classification Using Convolutional Neural Networks
    Zhang, Hanxiao
    Song, Wei
    Liu, Lizhen
    Du, Chao
    Zhao, Xinlei
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 441 - 444
  • [26] Clothing Classification Using Convolutional Neural Networks
    Hodecker, Andrei
    Fernandes, Anita M. R.
    Steffens, Alisson
    Crocker, Paul
    Leithardt, Valderi R. Q.
    2020 15TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2020), 2020,
  • [27] Classification of Fruits using Convolutional Neural Networks
    Raut, Roshani
    Jadhav, Anuja
    Sorte, Chaitrali
    Chaudhari, Anagha
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [28] Texture classification using convolutional neural networks
    Tivive, Fok Hing Chi
    Bouzerdoum, Abdesselam
    TENCON 2006 - 2006 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2006, : 660 - +
  • [29] Emphysema Classification Using Convolutional Neural Networks
    Pei, Xiaomin
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2015, PT I, 2015, 9244 : 455 - 461
  • [30] Weather Classification using Convolutional Neural Networks
    An, Jehong
    Chen, Yunfan
    Shin, Hyunchul
    2018 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2018, : 245 - 246