Enhanced bioethanol production using atmospheric cold plasma -assisted detoxi fication of sugarcane bagasse hydrolysate

被引:39
|
作者
Lin, Shin-Ping [1 ]
Kuo, Tai-Ching [2 ]
Wang, Hsueh-Ting [3 ]
Ting, Yuwen [3 ]
Hsieh, Chang-Wei [4 ]
Chen, Yu-Kuo [5 ]
Hsu, Hsien-Yi [6 ,7 ,8 ]
Cheng, Kuan-Chen [2 ,3 ,9 ]
机构
[1] Taipei Med Univ, Sch Food Safety, Taipei 11042, Taiwan
[2] Natl Taiwan Univ, Inst Biotechnol, Taipei 10672, Taiwan
[3] Natl Taiwan Univ, Inst Food Sci Technol, Taipei 10617, Taiwan
[4] Natl Chung Hsing Univ, Dept Food Sci & Biotechnol, 145 Xingda Rd, Taichung 40227, Taiwan
[5] Natl Pingtung Univ Sci & Technol, Dept Food Sci, Pingtung 91201, Taiwan
[6] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[7] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon Tong, Hong Kong, Peoples R China
[8] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
[9] China Med Univ, China Med Univ Hosp, Dept Med Res, 91 Hsueh Shih Rd, Taichung 40402, Taiwan
关键词
Bioethanol; Acid hydrolysis; Sugarcane bagasse; Cold plasma; Detoxification; Chicken meal; ETHANOL-PRODUCTION; SACCHAROMYCES-CEREVISIAE; ALCOHOL-DEHYDROGENASE; ACID PRETREATMENT; DETOXIFICATION; DEGRADATION; INHIBITION; GROWTH; YEAST; FERMENTATION;
D O I
10.1016/j.biortech.2020.123704
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
The current study used acid hydrolysis of lignocellulosic materials to obtain fermentable sugar for bioethanol production. However, toxic compounds that inhibit fermentation are also produced during the process, which reduces the bioethanol productivity. In this study, atmospheric cold plasma (ACP) was adopted to degrade the toxic compounds within sulfuric acid-hydrolyzed sugarcane bagasse. After ACP treatment, significant decreases in toxic compounds (31% of the formic acid, 45% of the acetic acid, 80% of the hydroxymethylfurfural, and 100% of the furfural) were observed. The toxicity of the hydrolysate was low enough for bioethanol production using Kluyveromyces marxianus. After adopting optimal ACP conditions (200 W power for 25 min), the bioethanol productivity improved from 0.25 to 0.65 g/L/h, which means that ACP could effectively degrade toxic compounds within the hydrolysate, thereby enhancing bioethanol production. Various nitrogen substitute was coordinated with detoxified hydrolysate, and chicken meal group presented the highest bioethanol productivity (0.45 g/L/h).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Bioethanol Production from Sugarcane Bagasse by Simultaneous Sacarification and Fermentation using Saccharomyces cerevisiae
    Hernawan
    Maryana, R.
    Pratiwi, D.
    Wahono, S. K.
    Darsih, C.
    Hayati, S. N.
    Poeloengasih, C. D.
    Nisa, K.
    Indrianingsih, A. W.
    Prasetyo, D. J.
    Jatmiko, T. H.
    Kismurtono, M.
    Rosyida, V. T.
    INTERNATIONAL CONFERENCE ON CHEMISTRY, CHEMICAL PROCESS AND ENGINEERING (IC3PE) 2017, 2017, 1823
  • [32] Production of bioethanol in sugarcane bagasse hemicellulosic hydrolysate by Scheffersomyces parashehatae, Scheffersomyces illinoinensis and Spathaspora arborariae isolated from Brazilian ecosystems
    Cadete, R. M.
    Melo-Cheab, M. A.
    Dussan, K. J.
    Rodrigues, R. C. L. B.
    da Silva, S. S.
    Gomes, F. C. O.
    Rosa, C. A.
    JOURNAL OF APPLIED MICROBIOLOGY, 2017, 123 (05) : 1203 - 1213
  • [33] Enhanced Ethanol Production from Sugarcane Bagasse Hydrolysate with High Content of Inhibitors by an Adapted Barnettozyma Californica
    Nouri, Hoda
    Azin, Mehrdad
    Mousavi, S. Latif
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2018, 37 (03) : 1169 - 1175
  • [34] BIOETHANOL PRODUCTION FROM PRETREATED SUGARCANE BAGASSE UNDER OPTIMISED CONDITIONS USING SELECTED FUNGI
    Adeleke, Adebare Johnson
    Raji, Hayatu Mohammed
    Hatzinikolaou, Dimitris G.
    Odunfa, Sunday A.
    BIOPHYSICAL REVIEWS, 2021, 13 (06) : 1320 - 1320
  • [35] Investigation of the influence of Candida tropicalis on bioethanol production using sugarcane bagasse: stochastic and in silico analysis
    Jeyaram K.
    Murugan D.
    Velmurugan S.
    Prabhu A.A.
    Raja S.
    Bose S.A.
    Balakrishnan D.
    Environmental Science and Pollution Research, 2024, 31 (56) : 64476 - 64492
  • [36] Continuous production of bioethanol from sugarcane bagasse and downstream purification using membrane integrated bioreactor
    Saha, Koel
    Maharana, Abhishek
    Sikder, Jaya
    Chakraborty, Sudip
    Curcio, Stefano
    Drioli, Enrico
    CATALYSIS TODAY, 2019, 331 : 68 - 77
  • [37] Exploring the potential of novel thermophilic bacterial strain for the production of bioemulsifiers using the hydrolysate of sugarcane bagasse
    Ejaz, Uroosa
    Zaidi, Syed Muzammil
    Fatima, Saleha
    Faisal, Musfira
    Sohail, Muhammad
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 8351 - 8363
  • [38] Succinate production by metabolically engineered Escherichia coli using sugarcane bagasse hydrolysate as the carbon source
    Liu, Rongming
    Liang, Liya
    Cao, Weijia
    Wu, Mingke
    Chen, Kequan
    Ma, Jiangfeng
    Jiang, Min
    Wei, Ping
    Ouyang, Pingkai
    BIORESOURCE TECHNOLOGY, 2013, 135 : 574 - 577
  • [39] Bioethanol Production From Sugarcane Bagasse Hemicellulose Hydrolysate by Immobilized S. shehatae in a Fluidized Bed Fermenter Under Magnetic Field
    Dussan, Kelly J.
    Justo, Oselys Rodriguez
    Perez, Victor Haber
    David, Geraldo F.
    Silveira Junior, Euripedes Garcia
    da Silva, Silvio S.
    BIOENERGY RESEARCH, 2019, 12 (02) : 338 - 346
  • [40] Bioethanol Production From Sugarcane Bagasse Hemicellulose Hydrolysate by Immobilized S. shehatae in a Fluidized Bed Fermenter Under Magnetic Field
    Kelly J. Dussán
    Oselys Rodriguez Justo
    Victor Haber Perez
    Geraldo F. David
    Euripedes Garcia Silveira Junior
    Silvio S. da Silva
    BioEnergy Research, 2019, 12 : 338 - 346