Bounds for the (Laplacian) spectral radius of graphs with parameter α

被引:2
|
作者
Tian, Gui-Xian [1 ]
Huang, Ting-Zhu [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Zhejiang, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
graph; adjacency matrix; Laplacian matrix; spectral radius; bound; ENERGY; EIGENVALUE; CONJECTURES;
D O I
10.1007/s10587-012-0030-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple connected graph of order n with degree sequence (d (1), d (2), aEuro broken vertical bar, d (n) ). Denote ( (alpha) t) (i) = I pound (j: i similar to j) d (j) (alpha) , ( (alpha) m) (i) = ( (alpha) t) (i) /d (i) (alpha) and ( (alpha) N) (i) = I pound (j: i similar to j) ( (alpha) t) (j) , where alpha is a real number. Denote by lambda(1)(G) and A mu(1)(G) the spectral radius of the adjacency matrix and the Laplacian matrix of G, respectively. In this paper, we present some upper and lower bounds of lambda(1)(G) and A mu(1)(G) in terms of ( (alpha) t) (i) , ( (alpha) m) (i) and ( (alpha) N) (i) . Furthermore, we also characterize some extreme graphs which attain these upper bounds. These results theoretically improve and generalize some known results.
引用
收藏
页码:567 / 580
页数:14
相关论文
共 50 条
  • [41] The Laplacian Spectral Radius of a Class of Unicyclic Graphs
    Zhang, Haixia
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [42] The Laplacian Spectral Radius of a Class of Bipartite Graphs
    Tan Xuezhong
    Liu, Bolian
    UTILITAS MATHEMATICA, 2012, 89 : 161 - 167
  • [43] The Laplacian spectral radius of graphs with given connectivity
    Feng, Lihua
    Ilic, Aleksandar
    ARS COMBINATORIA, 2012, 104 : 489 - 495
  • [44] The signless Laplacian spectral radius of graphs on surfaces
    Feng, Lihua
    Yu, Guihai
    Ilic, Aleksandar
    Stevanovic, Dragan
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (05): : 573 - 581
  • [45] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Kinkar Ch. Das
    Muhuo Liu
    Czechoslovak Mathematical Journal, 2016, 66 : 1039 - 1048
  • [46] Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs
    Das, Kinkar Ch.
    Liu, Muhuo
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (03) : 1039 - 1048
  • [47] Lower bounds for the Laplacian spectral radius of an oriented hypergraph
    Kitouni, Ouail
    Reff, Nathan
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 408 - 422
  • [48] Improved Upper Bounds for the Laplacian Spectral Radius of a Graph
    Wang, Tianfei
    Yang, Jin
    Li, Bin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [49] Bounds of Laplacian Spectral Radius of Mixed Graph's
    Cui, Shu-Yu
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL II: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 32 - 34
  • [50] Sharp bounds for the signless Laplacian spectral radius of digraphs
    Lang, Weiwei
    Wang, Ligong
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 238 : 43 - 49