Joint sparse principal component analysis

被引:168
|
作者
Yi, Shuangyan [1 ]
Lai, Zhihui [2 ]
He, Zhenyu [1 ]
Cheung, Yiu-ming [3 ,4 ]
Liu, Yang [3 ,4 ]
机构
[1] Harbin Inst Technol, Shenzhen Grad Sch, Sch Comp Sci, Harbin, Peoples R China
[2] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Hong Kong, Peoples R China
[4] Hong Kong Baptist Univ, Inst Res & Continuing Educ, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Dimensionality reduction; Joint sparse; l(2,1)-norm; FACE RECOGNITION; FRAMEWORK; DICTIONARY;
D O I
10.1016/j.patcog.2016.08.025
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Principal component analysis (PCA) is widely used in dimensionality reduction. A lot of variants of PCA have been proposed to improve the robustness of the algorithm. However, the existing methods either cannot select the useful features consistently or is still sensitive to outliers, which will depress their performance of classification accuracy. In this paper, a novel approach called joint sparse principal component analysis (JSPCA) is proposed to jointly select useful features and enhance robustness to outliers. In detail, JSPCA relaxes the orthogonal constraint of transformation matrix to make it have more freedom to jointly select useful features for low-dimensional representation. JSPCA imposes joint sparse constraints on its objective function, i.e., l(2,1)-norm is imposed on both the loss term and the regularization term, to improve the algorithmic robustness. A simple yet effective optimization solution is presented and the theoretical analyses of JSPCA are provided. The experimental results on eight data sets demonstrate that the proposed approach is feasible and effective. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:524 / 536
页数:13
相关论文
共 50 条
  • [31] Sparse principal component analysis in cancer research
    Hsu, Ying-Lin
    Huang, Po-Yu
    Chen, Dung-Tsa
    TRANSLATIONAL CANCER RESEARCH, 2014, 3 (03) : 182 - 190
  • [32] Certifiably optimal sparse principal component analysis
    Lauren Berk
    Dimitris Bertsimas
    Mathematical Programming Computation, 2019, 11 : 381 - 420
  • [33] A Selective Overview of Sparse Principal Component Analysis
    Zou, Hui
    Xue, Lingzhou
    PROCEEDINGS OF THE IEEE, 2018, 106 (08) : 1311 - 1320
  • [34] Sparse multivariate functional principal component analysis
    Song, Jun
    Kim, Kyongwon
    STAT, 2022, 11 (01):
  • [35] Approximation bounds for sparse principal component analysis
    Alexandre d’Aspremont
    Francis Bach
    Laurent El Ghaoui
    Mathematical Programming, 2014, 148 : 89 - 110
  • [36] ADAPTIVE WEIGHTED SPARSE PRINCIPAL COMPONENT ANALYSIS
    Yi, Shuangyan
    Liang, Yongsheng
    Liu, Wei
    Meng, Fanyang
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2018,
  • [37] A New Basis for Sparse Principal Component Analysis
    Chen, Fan
    Rohe, Karl
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2024, 33 (02) : 421 - 434
  • [38] An exact approach to sparse principal component analysis
    Alessio Farcomeni
    Computational Statistics, 2009, 24 : 583 - 604
  • [39] Certifiably optimal sparse principal component analysis
    Berk, Lauren
    Bertsimasi, Dimitris
    MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (03) : 381 - 420
  • [40] An exact approach to sparse principal component analysis
    Farcomeni, Alessio
    COMPUTATIONAL STATISTICS, 2009, 24 (04) : 583 - 604