Pre-combustion capture of CO2 by gas hydrate formation in silica gel pore structure

被引:78
|
作者
Kang, Seong-Pil [1 ]
Lee, Jonghyub [1 ]
Seo, Yutaek [2 ]
机构
[1] Korea Inst Energy Res, Greenhouse Gas Res Dept, Taejon 305343, South Korea
[2] Korea Adv Inst Sci & Technol, Ocean Syst Engn Div, Taejon 305701, South Korea
基金
新加坡国家研究基金会;
关键词
Gas hydrate; CO2; Separation; Silica gel; Pre-combustion; Capture; CARBON-DIOXIDE; PHASE-EQUILIBRIUM; FLUE-GAS; HYDROGEN; MIXTURES; METHANE; CO2/H-2;
D O I
10.1016/j.cej.2012.11.131
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents an efficient hydrate-based CO2 separation process from a binary mixture consisting of 40.3 mol% CO2 and balanced H-2, which is a simulated fuel gas from the integrated gasification combined cycle (IGCC), in the presence of porous silica gel particles containing water. According to our previous work (Y. Sea, S.P. Kang, Enhancing CO2 separation for pre-combustion capture with hydrate formation in silica gel pore structure, Chem. Eng. J. 161 (2010) 308-312), the cage occupancy of CO2 in mixed gas hydrates with H-2 is enhanced by the use of a silica gel pore structure containing water. Based on that result, a simulated fuel gas is applied to form gas hydrates, and a richer CO2 containing gas stream is thereby retrieved through dissociation of the hydrates from a single-stage reactor. Equilibrium dissociation pressures of CO2 + H-2 gas mixtures were measured with silica gel particles with pore sizes of 25, 100, and 250 am. The effect of CO2 concentration on equilibrium dissociation pressures was also investigated at a silica gel pore diameter of 100 nm. The results indicate that when a simulated fuel gas has formed in 100 nm silica gel pores, a gas stream containing more than 96 mol% of CO2 is achieved by one-stage gas hydrate formation in a silica gel pore structure, which is comparable to the result (88-92) from hydrate formation in bulk water. In addition to demonstrating enhanced distribution of CO2 in coexisting phases, gas hydrate formation in a fixed-bed type reactor charged with silica gel particles containing water in pores is investigated. The formation of gas hydrates in silica gel pores occurred to a high extent and at a high rate, and the proposed method is thus expected to be a promising CO2 capture tool for pre-combustion. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:126 / 132
页数:7
相关论文
共 50 条
  • [31] Chemical Looping for Pre-combustion CO2 Capture - Performance and Cost Analysis
    Mantripragada, Hari C.
    Rubin, Edward S.
    GHGT-11, 2013, 37 : 618 - 625
  • [32] Pre-combustion CO2 capture from natural gas power plants, with ATR and MDEA processes
    Romano, Matteo C.
    Chiesa, Paolo
    Lozza, Giovanni
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (05) : 785 - 797
  • [33] Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC
    Damen, Kay
    Gnutek, Radoslaw
    Kaptein, Joost
    Nannan, Nawin Ryan
    Oyarzun, Bernardo
    Trapp, Carsten
    Colonna, Piero
    van Dijk, Eric
    Gross, Joachim
    Bardow, Andre
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1214 - 1221
  • [34] Cadmium based metal oxide sorbents for pre-combustion CO2 capture
    Vogt, Christian
    Knowles, Gregory P.
    Chaffee, Alan L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [35] Performance of sorption-enhanced water-gas shift as a pre-combustion CO2 capture technology
    van Selow, E. R.
    Cobden, P. D.
    van den Brink, R. W.
    Hufton, J. R.
    Wright, A.
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 689 - 696
  • [36] Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate
    Babu, Ponnivalavan
    Datta, Stuti
    Kumar, Rajnish
    Linga, Praveen
    ENERGY, 2014, 78 : 458 - 464
  • [37] Hydrotalcite/SBA15 composites for pre-combustion CO2 capture: CO2 adsorption characteristics
    Peng, Jiaxi
    Iruretagoyena, Diana
    Chadwick, David
    JOURNAL OF CO2 UTILIZATION, 2018, 24 : 73 - 80
  • [38] Breakthrough adsorption study of a commercial activated carbon for pre-combustion CO2 capture
    Garcia, S.
    Gil, M. V.
    Martin, C. F.
    Pis, J. J.
    Rubiera, F.
    Pevida, C.
    CHEMICAL ENGINEERING JOURNAL, 2011, 171 (02) : 549 - 556
  • [39] Design optimization of a pre-combustion CO2 capture plant embedding experimental knowledge
    Trapp, Carsten
    Thomaser, Timon
    van Dijk, H. A. J.
    Colonna, Piero
    FUEL, 2015, 157 : 126 - 139
  • [40] Development of membrane reactor technology for power production with pre-combustion CO2 capture
    Dijkstra, Jan Wilco
    Pieterse, Johannis A. Z.
    Li, Hui
    Boon, Jurriaan
    van Delft, Yvonne C.
    Raju, Gunabalan
    Peppink, Gerard
    van den Brink, Ruud W.
    Jansen, Daniel
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 715 - 722