Extensions of Fischer's inequality

被引:13
|
作者
Choi, Daeshik [1 ]
Tam, Tin-Yau [2 ]
Zhang, Pingping [3 ]
机构
[1] Lake Super State Univ, Sch Math & Comp Sci, Sault Sainte Marie, MI 49783 USA
[2] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[3] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Fischer's inequality; Numerical range in a sector; Determinants of block matrices; MATRICES;
D O I
10.1016/j.laa.2019.01.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by B(n(1), ..., n(k)) the set of block matrices whose (i, j)-blocks are n(i) x n(j) complex matrices. Let A(i) is an element of B(n(1), ..., n(k)) be positive semidefinite and D-i is an element of B(n(1), ..., n(k)) be block diagonal matrices for 1 <= i <= m. We obtain the following extension of Fischer's inequality: det (Sigma(m)(i=1) D(i)A(i)(pi) D-i(*)) <= Pi(k)(j=1) det (Sigma(m)(i=1)[D-i](j)[A(i)](j)(pi)[D-i](j)(*), 0 <= p(i) <= 1, where [A(i)](j) is the j-th main diagonal block of A(i). In addition, if A(i) and D-i, are nonsingular, the reverse inequality holds when -1 <= p(i) <= 0. We also extend these two results to a larger class of matrices, namely, matrices whose numerical ranges are contained in a sector. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:311 / 322
页数:12
相关论文
共 50 条