Cross-Lingual Sentiment Analysis for Indian Regional Languages

被引:0
|
作者
Impana, P. [1 ]
Kallimani, Jagadish S. [1 ]
机构
[1] M S Ramaiah Inst Technol, Dept Comp Sci & Engn, Bangalore, Karnataka, India
关键词
Cross Language; Sentiment Analysis; Supervised Training of BRAE; Bilingual Corpora; Monolingual Labeled Dataset; Phrase Pair; Cross Entropy;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The process of identifying the opinion and categorization of a given dataset to determine whether the attitude of a writer towards the given data is positive, negative or neutral is called as Sentiment Analysis. Sentiment Analysis involves computational identification of opinion on given dataset. It is also referred as the extraction of the opinion. Cross lingual Sentiment Analysis refers to the generation of the opinions in two languages. One language is highly rich in its resources providing sufficient dataset required for the opinion extraction known as Resource Rich Language. The other languages such as Kannada, Hindi, Marati which are poor in its resources and lacks in the data Wordnet and seeks the help of resource rich languages for the opinion extraction known as Resource Poor Language. Sentiment Analysis may be the opinions of movie reviews and social media responses. Here we have used architecture of auto encoder which helps in the generation of the sentiment analysis in two languages. Sentiment Analysis of two languages can be performed by using the Bilingually Constrained Recursive Auto-encoder (BRAE) model and also with the help of linked Wordnet datasets.
引用
收藏
页码:867 / 872
页数:6
相关论文
共 50 条
  • [21] Learning to Adapt Credible Knowledge in Cross-lingual Sentiment Analysis
    Chen, Qiang
    Li, Wenjie
    Lei, Yu
    Liu, Xule
    He, Yanxiang
    PROCEEDINGS OF THE 53RD ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 7TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING, VOL 1, 2015, : 419 - 429
  • [22] Cross-lingual sentiment transfer with limited resources
    Rasooli, Mohammad Sadegh
    Farra, Noura
    Radeva, Axinia
    Yu, Tao
    McKeown, Kathleen
    MACHINE TRANSLATION, 2018, 32 (1-2) : 143 - 165
  • [23] A Comparative Study of Cross-Lingual Sentiment Classification
    Wan, Xiaojun
    2012 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2012), VOL 1, 2012, : 24 - 31
  • [24] Cross-lingual sentiment classification with stacked autoencoders
    Guangyou Zhou
    Zhiyuan Zhu
    Tingting He
    Xiaohua Tony Hu
    Knowledge and Information Systems, 2016, 47 : 27 - 44
  • [25] An Approach to Cross-lingual Sentiment Lexicon Construction
    Chang, Chia-Hsuan
    Wu, Ming-Lun
    Hwang, San-Yih
    2019 IEEE INTERNATIONAL CONGRESS ON BIG DATA (IEEE BIGDATA CONGRESS 2019), 2019, : 129 - 131
  • [26] Cross-lingual sentiment classification with stacked autoencoders
    Zhou, Guangyou
    Zhu, Zhiyuan
    He, Tingting
    Hu, Xiaohua Tony
    KNOWLEDGE AND INFORMATION SYSTEMS, 2016, 47 (01) : 27 - 44
  • [27] Active Learning for Cross-Lingual Sentiment Classification
    Li, Shoushan
    Wang, Rong
    Liu, Huanhuan
    Huang, Chu-Ren
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, NLPCC 2013, 2013, 400 : 236 - 246
  • [28] Choosing Transfer Languages for Cross-Lingual Learning
    Lin, Yu-Hsiang
    Chen, Chian-Yu
    Lee, Jean
    Li, Zirui
    Zhang, Yuyan
    Xia, Mengzhou
    Rijhwani, Shruti
    He, Junxian
    Zhang, Zhisong
    Ma, Xuezhe
    Anastasopoulos, Antonios
    Littell, Patrick
    Neubig, Graham
    Anastasopoulos, Antonios
    Littell, Patrick
    Neubig, Graham
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 3125 - 3135
  • [29] Cross-Lingual Word Embeddings for Turkic Languages
    Kuriyozov, Elmurod
    Doval, Yerai
    Gomez-Rodriguez, Carlos
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 4054 - 4062
  • [30] A multimodal approach to cross-lingual sentiment analysis with ensemble of transformer and LLM
    Miah, Md Saef Ullah
    Kabir, Md Mohsin
    Bin Sarwar, Talha
    Safran, Mejdl
    Alfarhood, Sultan
    Mridha, M. F.
    SCIENTIFIC REPORTS, 2024, 14 (01):