Electronic structure of Li2O2 {0001} surfaces

被引:77
|
作者
Radin, Maxwell D. [4 ]
Tian, Feng [3 ]
Siegel, Donald J. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Michigan Energy Inst, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Appl Phys Program, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; LITHIUM; BATTERY; DISCHARGE; TRANSITION;
D O I
10.1007/s10853-012-6552-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The surface properties of the Li2O2 discharge phase are expected to impact strongly the capacity, rate capability, and rechargeability of Li-oxygen batteries. Prior calculations have suggested that the presence of half-metallic surface states in Li2O2 may mitigate electrical passivation resulting from the growth of Li2O2, which is a bulk insulator. Here we revisit the electronic structure of bulk Li2O2 and the dominant Li2O2 {0001} surface by comparing results obtained with the PBE GGA functional, the HSE06 hybrid functional, and quasiparticle GW methods. Our results suggest that the bulk band gap lies between the value predicted by the G(0)W(0) method, 5.15 eV, and the value predicted by the self-consistent quasiparticle GW (scGW) approximation, 6.37 eV. The PBE, HSE06, and scGW methods agree that the most stable surface, an oxygen-rich {0001} termination, is indeed half-metallic. This result supports the notion that the electronic structure of surfaces may play an important role in understanding performance limitations in Li-oxygen batteries.
引用
收藏
页码:7564 / 7570
页数:7
相关论文
共 50 条
  • [31] Trends in the Adsorption of Oxygen and Li2O2 on Transition-Metal Carbide Surfaces: A Theoretical Study
    Tereshchuk, Polina
    Golodnitsky, Diana
    Natan, Amir
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (14): : 7716 - 7724
  • [32] Amorphous Li2O2: Chemical Synthesis and Electrochemical Properties
    Zhang, Yelong
    Cui, Qinghua
    Zhang, Xinmin
    McKee, William C.
    Xu, Ye
    Ling, Shigang
    Li, Hong
    Zhong, Guiming
    Yang, Yong
    Peng, Zhangquan
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (36) : 10717 - 10721
  • [33] Adsorption and Deposition of Li2O2 on TiC{111} Surface
    Wang, Zhenyu
    Sun, Jianwei
    Cheng, Yonghong
    Niu, Chunming
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (21): : 3919 - 3923
  • [34] INFRARED SPECTRA AND STRUCTURES AND THERMODYNAMICS OF GASEOUS LIO, LI2O, AND LI2O2
    WHITE, D
    SESHADRI, KS
    DEVER, DF
    LINEVSKY, MJ
    MANN, DE
    JOURNAL OF CHEMICAL PHYSICS, 1963, 39 (10): : 2463 - &
  • [35] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Josepetti, Daniela M.
    Sousa, Bianca P.
    Rodrigues, Simone A. J.
    Freitas, Renato G.
    Doubek, Gustavo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 223 - 231
  • [36] Screening for Superoxide Reactivity in Li-O2 Batteries: Effect on Li2O2/LiOH Crystallization
    Black, Robert
    Oh, Si Hyoung
    Lee, Jin-Hyon
    Yim, Taeeun
    Adams, Brian
    Nazar, Linda F.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) : 2902 - 2905
  • [37] Screening for superoxide reactivity in Li-O2 batteries: Effect on Li2O2/LiOH crystallization
    Nazar, L.F. (lfnazar@uwaterloo.ca), 1600, American Chemical Society (134):
  • [38] Promoting Formation of Noncrystalline Li2O2 in the Li-O2 Battery with RuO2 Nanoparticles
    Yilmaz, Eda
    Yogi, Chihiro
    Yamanaka, Keisuke
    Ohta, Toshiaki
    Byon, Hye Ryung
    NANO LETTERS, 2013, 13 (10) : 4679 - 4684
  • [39] The Decisive Role of Li2O2 Desorption for Oxygen Reduction Reaction in Li-O2 Batteries
    Xu, Chengyang
    Ge, Aimin
    Kannari, Koki
    Peng, Baoxu
    Xue, Min
    Ding, Bing
    Inoue, Ken-ichi
    Zhang, Xiaogang
    Ye, Shen
    ACS ENERGY LETTERS, 2023, 8 (03) : 1289 - 1299
  • [40] Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries
    Gallant, Betar M.
    Kwabi, David G.
    Mitchell, Robert R.
    Zhou, Jigang
    Thompson, Carl V.
    Shao-Horn, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2518 - 2528