Channel formation in organic field-effect transistors

被引:83
|
作者
Li, T [1 ]
Balk, JW
Ruden, PP
Campbell, IH
Smith, DL
机构
[1] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1453509
中图分类号
O59 [应用物理学];
学科分类号
摘要
Results of two-dimensional electrostatic modeling of organic field-effect transistors, focusing on the formation of the conductive channel, are reported. The effect on channel formation of the choice of the source and drain contact metal is investigated for both top- and bottom-contact device structures. High-work-function metal (e.g., gold) source and drain contacts produce a conducting p-type region near these contacts. In contrast, low-work-function metal source and drain contacts (e.g., magnesium) lead to depleted regions. In the center of the device, between the source and drain contacts, the channel carrier density at a fixed gate bias is determined by the work function of the gate contact material, and is essentially independent of the metal used to form the source and drain contacts. The principal difference between top- and bottom-contact structures is the spatial variation of the charge density in the vicinity of the source and drain contacts. The channel carrier density for a fixed gate bias (and gate contact material) between the source and drain electrodes is essentially the same for the two structures. Finally, the dependence of the transistor threshold voltage on the gate contact metal work function and the device implications of the spatial variation of the induced charge density are discussed. (C) 2002 American Institute of Physics.
引用
收藏
页码:4312 / 4318
页数:7
相关论文
共 50 条
  • [21] Organic field-effect bipolar transistors
    Dodabalapur, A
    Katz, HE
    Torsi, L
    Haddon, RC
    APPLIED PHYSICS LETTERS, 1996, 68 (08) : 1108 - 1110
  • [22] Trapping in organic field-effect transistors
    Schön, JH
    Batlogg, B
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (01) : 336 - 342
  • [23] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China Chemistry, 2019, 62 : 313 - 330
  • [24] Monolayer organic field-effect transistors
    Liu, Jie
    Jiang, Lang
    Hu, Wenping
    Liu, Yunqi
    Zhu, Daoben
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (03) : 313 - 330
  • [25] Functional Organic Field-Effect Transistors
    Guo, Yunlong
    Yu, Gui
    Liu, Yunqi
    ADVANCED MATERIALS, 2010, 22 (40) : 4427 - 4447
  • [26] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China(Chemistry), 2019, (03) : 313 - 330
  • [27] Vertical Organic Field-Effect Transistors
    Liu, Jinyu
    Qin, Zhengsheng
    Gao, Haikuo
    Dong, Huanli
    Zhu, Jia
    Hu, Wenping
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (17)
  • [28] Interfaces in Organic Field-Effect Transistors
    Horowitz, Gilles
    ORGANIC ELECTRONICS, 2010, 223 : 113 - 153
  • [29] Reliability of Organic Field-Effect Transistors
    Sirringhaus, Henning
    ADVANCED MATERIALS, 2009, 21 (38-39) : 3859 - 3873
  • [30] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China(Chemistry), 2019, 62 (03) : 313 - 330