The performance evaluation of the state-of-the-art EEG-based seizure prediction models

被引:7
|
作者
Ren, Zhe [1 ,2 ]
Han, Xiong [1 ,2 ]
Wang, Bin [1 ,2 ]
机构
[1] Zhengzhou Univ Peoples Hosp, Dept Neurol, Zhengzhou, Peoples R China
[2] Henan Prov Peoples Hosp, Dept Neurol, Zhengzhou, Peoples R China
来源
FRONTIERS IN NEUROLOGY | 2022年 / 13卷
关键词
epilepsy; seizure prediction model; EEG; artificial intelligence; seizure occurrence period; seizure prediction horizon; post-processing; CONVOLUTIONAL NEURAL-NETWORKS; DIRECTED TRANSFER-FUNCTION; CONNECTIVITY ANALYSIS; SPECTRAL POWER; LONG-TERM; EPILEPSY; ELECTROENCEPHALOGRAM; LOCALIZATION; OPTIMIZATION; TRANSFORM;
D O I
10.3389/fneur.2022.1016224
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The recurrent and unpredictable nature of seizures can lead to unintentional injuries and even death. The rapid development of electroencephalogram (EEG) and Artificial Intelligence (AI) technologies has made it possible to predict seizures in real-time through brain-machine interfaces (BCI), allowing advanced intervention. To date, there is still much room for improvement in predictive seizure models constructed by EEG using machine learning (ML) and deep learning (DL). But, the most critical issue is how to improve the performance and generalization of the model, which involves some confusing conceptual and methodological issues. This review focuses on analyzing several factors affecting the performance of seizure prediction models, focusing on the aspects of post-processing, seizure occurrence period (SOP), seizure prediction horizon (SPH), and algorithms. Furthermore, this study presents some new directions and suggestions for building high-performance prediction models in the future. We aimed to clarify the concept for future research in related fields and improve the performance of prediction models to provide a theoretical basis for future applications of wearable seizure detection devices.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Assessment of a scalp EEG-based automated seizure detection system
    Kelly, K. M.
    Shiau, D. S.
    Kern, R. T.
    Chien, J. H.
    Yang, M. C. K.
    Yandora, K. A.
    Valeriano, J. P.
    Halford, J. J.
    Sackellares, J. C.
    CLINICAL NEUROPHYSIOLOGY, 2010, 121 (11) : 1832 - 1843
  • [42] EEG-based neonatal seizure detection with Support Vector Machines
    Temko, A.
    Thomas, E.
    Marnane, W.
    Lightbody, G.
    Boylan, G.
    CLINICAL NEUROPHYSIOLOGY, 2011, 122 (03) : 464 - 473
  • [43] Nonlinear Dimension Reduction for EEG-Based Epileptic Seizure Detection
    Birjandtalab, J.
    Pouyan, M. Baran
    Nourani, M.
    2016 3RD IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, 2016, : 595 - 598
  • [44] A State-of-the-Art Review of Fatigue Life Prediction Models for Solder Joint
    Su, Sinan
    Akkara, Francy John
    Thaper, Ravinder
    Alkhazali, Atif
    Hamasha, Mohammad
    Hamasha, Sa'd
    JOURNAL OF ELECTRONIC PACKAGING, 2019, 141 (04)
  • [45] An Optimized EEG-Based Seizure Detection Algorithm for Implantable Devices
    Manzouri, Farrokh
    Khurana, Lakshay
    Kravalis, Kristina
    Stieglitz, Thomas
    Schulze-Bonhage, Andreas
    Duempelmann, Matthias
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 995 - 998
  • [46] An EEG-Based Seizure Recognition Method Using Dynamic Routing
    Xiong, Zhiwen
    Liu, Yang
    Jiang, Peng
    IEEE ACCESS, 2024, 12 : 74054 - 74068
  • [47] EEG-based patient-specific seizure prediction based on Spatial-Temporal Hypergraph Attention Transformer
    Dong, Changxu
    Sun, Dengdi
    Zhang, Zejing
    Luo, Bin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [48] NEUROMEDIC™: AN EEG-BASED FIELD-DEPLOYABLE SEIZURE DETECTOR
    Stephane, Bibian
    Kaffashi, Farhad
    Chakravarthy, Niranjan
    Zikov, T.
    Modarres, Mo
    EPILEPSIA, 2008, 49 : 381 - 382
  • [49] Clinical relevance of seizure prediction performance based on synchronization changes in the EEG
    Schelter, B.
    Drentrup, H. Feldwisch genannt
    Wohlmuth, J.
    Nawrath, J.
    Brandt, A.
    Timmer, J.
    Schulze-Bonhage, A.
    EPILEPSIA, 2007, 48 : 54 - 54
  • [50] EEG-FCV: An EEG-Based Functional Connectivity Visualization Framework for Cognitive State Evaluation
    Zeng, Hong
    Jin, Yanping
    Wu, Qi
    Pan, Deng
    Xu, Feifan
    Zhao, Yue
    Hu, Hua
    Kong, Wanzeng
    FRONTIERS IN PSYCHIATRY, 2022, 13