DEPTH ESTIMATION FROM SINGLE IMAGES USING MODIFIED STACKED GENERALIZATION

被引:0
|
作者
Mohaghegh, H. [1 ]
Samavi, S. [1 ]
Karimi, N. [1 ]
Soroushmehr, S. M. R. [2 ,3 ]
Najarian, K. [2 ,3 ,4 ]
机构
[1] Isfahan Univ Technol, Dept Elect & Comp Engn, Esfahan, Iran
[2] Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, U M Ctr Integrat Res Crit Care MCIRCC, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
关键词
2D to 3D conversion; Depth map; Monocular cues; Modified stacked generalization; SHAPE;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Despite the rapid growth of 3D displays in the last few years, insufficient supply of 3D contents has led to considerable effort in devising 2D to 3D conversion algorithms. Inferring associated depth from single 2D image is still a controversial issue in these algorithms. In this paper we propose an algorithm, which unlike previous strategies, aggregates both global and local information from a pool of images with known depth maps. Hence, we propose to extract a set of features from the image patches of globally similar images in a large 3D image repository. These features describe powerful monocular depth perception cues. Using these relevant and robust features and using modified stacked generalization learning scheme, our scheme directly extracts an accurate depth map from given images. Experimental results demonstrate that our method has surpassed state-of-the-art algorithms in both quantitative and qualitative analysis.
引用
收藏
页码:1621 / 1625
页数:5
相关论文
共 50 条
  • [21] Flood Depth Estimation from Web Images
    Meng, Zonglin
    Peng, Bo
    Huang, Qunying
    ARIC 2019: PROCEEDINGS OF THE 2ND ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON ADVANCES IN RESILIENT AND INTELLIGENT CITIES (ARIC-2019), 2019, : 37 - 40
  • [22] DEPT: Depth Estimation by Parameter Transfer for Single Still Images
    Li, Xiu
    Qin, Hongwei
    Wang, Yangang
    Zhang, Yongbing
    Dai, Qionghai
    COMPUTER VISION - ACCV 2014, PT II, 2015, 9004 : 45 - 58
  • [23] Underwater Depth Estimation and Image Restoration Based on Single Images
    Drews, Paulo L. J., Jr.
    Nascimento, Erickson R.
    Botelho, Silvia S. C.
    Montenegro Campos, Mario Fernando
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2016, 36 (02) : 24 - 35
  • [24] Depth Estimation from Monocular Images Using Dilated Convolution and Uncertainty Learning
    Ma, Haojie
    Ding, Yinzhang
    Wang, Lianghao
    Zhang, Ming
    Li, Dongxiao
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2018, PT II, 2018, 11165 : 13 - 23
  • [25] Estimation of particle depth from two defocused images using the Fourier transform
    Zhou, Wu
    Luo, Xu
    Chen, Benting
    Zhang, Yukun
    Cai, Xiaoshu
    PARTICUOLOGY, 2020, 49 (49): : 48 - 54
  • [26] Depth Estimation for Hazy Images using Deep Learning
    Rahadianti, Laksmita
    Sakaue, Fumihiko
    Sato, Jun
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 238 - 243
  • [27] Improved Estimation of Hand Postures Using Depth Images
    Hamester, Dennis
    Jirak, Doreen
    Wermter, Stefan
    2013 16TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR), 2013,
  • [28] Simultaneous 3D hand detection and pose estimation using single depth images
    Zhang, Yu
    Mi, Siya
    Wu, Jianxin
    Geng, Xin
    PATTERN RECOGNITION LETTERS, 2020, 140 (140) : 43 - 48
  • [29] Face-from-Depth for Head Pose Estimation on Depth Images
    Borghi, Guido
    Fabbri, Matteo
    Vezzani, Roberto
    Calderara, Simone
    Cucchiara, Rita
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (03) : 596 - 609
  • [30] FAST DEPTH ESTIMATION FROM SINGLE IMAGE USING STRUCTURED FOREST
    Fang, Shuai
    Jin, Ren
    Cao, Yang
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4022 - 4026