Shape preserving α-fractal rational cubic splines

被引:0
|
作者
Balasubramani, N. [1 ,2 ]
Prasad, M. Guru Prem [1 ]
Natesan, S. [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, Assam, India
[2] Natl Inst Technol Puducherry, Dept Math, Karaikal 609609, India
关键词
alpha-fractal function; Constrained interpolation; Positivity; Monotonicity; INTERPOLATION; VISUALIZATION; POSITIVITY;
D O I
10.1007/s10092-020-00372-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a new alpha-fractal rational cubic spline is introduced with the help of the iterated function system (IFS) that contains rational functions. The numerator of the rational function contains a cubic polynomial and the denominator of the rational function contains a quadratic polynomial with three shape parameters. The convergence analysis of the alpha-fractal rational cubic spline is established. By restricting the scaling factors and the shape parameters, the alpha-fractal rational cubic spline is constrained between two piecewise linear functions whenever interpolation data lies in between two piecewise linear functions. Also, positivity and monotonicity of the alpha -fractal rational cubic spline are discussed. Numerical examples are provided to support the theoretical results.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Shape preserving rational bi-cubic function
    Hussain, Malik Zawwar
    Hussain, Maria
    Amjad, Madiha
    EGYPTIAN INFORMATICS JOURNAL, 2012, 13 (03) : 147 - 154
  • [22] Shape-preserving weighted rational cubic interpolation
    Bao, F. (fxbao@sdu.edu.cn), 2012, Binary Information Press, P.O. Box 162, Bethel, CT 06801-0162, United States (08):
  • [23] Shape-preserving quasi-interpolating univariate cubic splines
    Conti, C
    Morandi, R
    Rabut, C
    MATHEMATICAL METHODS FOR CURVES AND SURFACES II, 1998, : 55 - 62
  • [24] SHAPE PRESERVING C2 CUBIC POLYNOMIAL INTERPOLATING SPLINES
    FIOROT, JC
    TABKA, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (03): : 133 - 138
  • [25] Univariate cubic Lp splines and shape-preserving, multiscale interpolation by univariate cubic L1 splines
    Lavery, JE
    COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (04) : 319 - 336
  • [26] Preserving convexity through rational cubic spline fractal interpolation function
    Viswanathan, P.
    Chand, A. K. B.
    Agarwal, R. P.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 263 : 262 - 276
  • [27] Shape preserving rational cubic spline for positive and convex data
    Hussain, Malik Zawwar
    Sarfraz, Muhammad
    Shaikh, Tahira Sumbal
    EGYPTIAN INFORMATICS JOURNAL, 2011, 12 (03) : 231 - 236
  • [28] Shape Preserving Rational Cubic Ball Interpolation for Positive Data
    Jaafar, Wan Nurhadani Wan
    Piah, Abd Rahni Mat
    Abbas, Muhammad
    PROCEEDINGS OF THE 21ST NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM21): GERMINATION OF MATHEMATICAL SCIENCES EDUCATION AND RESEARCH TOWARDS GLOBAL SUSTAINABILITY, 2014, 1605 : 325 - 330
  • [29] Shape-preserving properties of univariate cubic L1 splines
    Cheng, H
    Fang, SC
    Lavery, JE
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 174 (02) : 361 - 382
  • [30] SHAPE-PRESERVING C2-CUBIC POLYNOMIAL INTERPOLATING SPLINES
    FIOROT, JC
    TABKA, J
    MATHEMATICS OF COMPUTATION, 1991, 57 (195) : 291 - 298