Conification of Kahler and Hyper-Kahler Manifolds

被引:29
|
作者
Alekseevsky, D. V. [1 ,2 ]
Cortes, V. [3 ,4 ]
Mohaupt, T. [5 ]
机构
[1] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 101447, Russia
[2] Masaryk Univ, CS-61137 Brno, Czech Republic
[3] Univ Hamburg, Dept Math, D-20146 Hamburg, Germany
[4] Univ Hamburg, Ctr Math Phys, D-20146 Hamburg, Germany
[5] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
关键词
HYPERKAHLER; GEOMETRY; SPACES;
D O I
10.1007/s00220-013-1812-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a Kahler manifold M endowed with a Hamiltonian Killing vector field Z, we construct a conical Kahler manifold such that M is recovered as a Kahler quotient of . Similarly, given a hyper-Kahler manifold (M, g, J (1), J (2), J (3)) endowed with a Killing vector field Z, Hamiltonian with respect to the Kahler form of J (1) and satisfying , we construct a hyper-Kahler cone such that M is a certain hyper-Kahler quotient of . In this way, we recover a theorem by Haydys. Our work is motivated by the problem of relating the supergravity c-map to the rigid c-map. We show that any hyper-Kahler manifold in the image of the c-map admits a Killing vector field with the above properties. Therefore, it gives rise to a hyper-Kahler cone, which in turn defines a quaternionic Kahler manifold. Our results for the signature of the metric and the sign of the scalar curvature are consistent with what we know about the supergravity c-map.
引用
收藏
页码:637 / 655
页数:19
相关论文
共 50 条
  • [31] The holomorphic symplectic structures on hyper-Kahler manifolds of type A∞
    Hattori, Kota
    ADVANCES IN GEOMETRY, 2014, 14 (04) : 613 - 630
  • [32] SO and USp Kahler and hyper-Kahler quotients and lumps
    Eto, Minoru
    Fujimori, Toshiaki
    Gudnason, Sven Bjarke
    Nitta, Muneto
    Ohashi, Keisuke
    NUCLEAR PHYSICS B, 2009, 815 (03) : 495 - 538
  • [33] Hyper-holomorphic connections on vector bundles on hyper-Kahler manifolds
    Meazzini, Francesco
    Onorati, Claudio
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (01)
  • [34] Hyper-Kahler structures on the tangent bundle of a Kahler manifold
    Oproiu, Vasile
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (01): : 104 - 119
  • [35] A CONSTRUCTION OF HYPER-KAHLER METRICS
    GINDIKIN, SG
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1986, 20 (03) : 238 - 240
  • [36] A CONJECTURAL BOUND ON THE SECOND BETTI NUMBER FOR HYPER-KAHLER MANIFOLDS
    Kim, Yoon-Joo
    Laza, Radu
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (03): : 467 - 480
  • [37] Hyper-Kahler Nahm transforms
    Bartocci, C
    Jardim, M
    ALGEBRAIC STRUCTURES AND MODULI SPACES, 2004, 38 : 103 - 111
  • [38] CALIBRATIONS IN HYPER-KAHLER GEOMETRY
    Grantcharov, Gueo
    Verbitsky, Misha
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (02)
  • [39] An inequality for Betti numbers of hyper-Kahler manifolds of dimension 6
    Kurnosov, N. M.
    MATHEMATICAL NOTES, 2016, 99 (1-2) : 330 - 334
  • [40] P = W for Lagrangian fibrations and degenerations of hyper-Kahler manifolds
    Harder, Andrew
    Li, Zhiyuan
    Shen, Junliang
    Yin, Qizheng
    FORUM OF MATHEMATICS SIGMA, 2021, 9