Hamiltonian embedding of the massive Yang-Mills theory and the generalized Stuckelberg formalism

被引:54
|
作者
Banerjee, R [1 ]
BarcelosNeto, J [1 ]
机构
[1] SN BOSE NATL CTR BASIC SCI, CALCUTTA 700091, W BENGAL, INDIA
关键词
Hamiltonian embedding; non-linear constraints;
D O I
10.1016/S0550-3213(97)00296-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Using the general notions of Batalin, Fradkin, Fradkina and Tyutin to convert second-class systems into first-class ones, we present a gauge-invariant formulation of the massive Yang-Mills theory by embedding it in an extended phase space. The infinite set of correction terms necessary for obtaining the involutive constraints and Hamiltonian is explicitly computed and expressed in a closed form. It is also shown that the extra fields introduced in the correction terms are exactly identified with the auxiliary scalars used in the generalized Stuckelberg formalism for converting a gauge non-invariant Lagrangian into a gauge-invariant form. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:453 / 478
页数:26
相关论文
共 50 条
  • [31] Hamiltonian formulation and boundary conditions in Yang-Mills theory
    Cronström, C
    ACTA PHYSICA SLOVACA, 2000, 50 (03) : 369 - 379
  • [32] Dynamical breaking of generalized Yang-Mills theory
    Wang, DF
    Song, HS
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 42 (06) : 847 - 850
  • [33] Hamiltonian approach to Yang-Mills theory in Coulomb gauge
    Reinhardt, H.
    Epple, D.
    Schleifenbaum, W.
    QUARK CONFINEMENT AND THE HADRON SPECTRUM VII, 2007, 892 : 93 - +
  • [34] Generalized stochastic quantization of Yang-Mills theory
    Hüffel, H
    Kelnhofer, G
    ANNALS OF PHYSICS, 1998, 270 (01) : 231 - 245
  • [35] EXISTENCE OF SOLUTIONS FOR A GENERALIZED YANG-MILLS THEORY
    YANG, YS
    LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (03) : 257 - 267
  • [36] Hamiltonian flow in Coulomb gauge Yang-Mills theory
    Leder, Markus
    Pawlowski, Jan M.
    Reinhardt, Hugo
    Weber, Axel
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [37] NON-INTEGRABILITY OF GENERALIZED YANG-MILLS HAMILTONIAN SYSTEM
    Shi, Shaoyun
    Li, Wenlei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1645 - 1655
  • [38] MASSIVE YANG-MILLS THEORY - RENORMALIZABILITY VERSUS UNITARITY
    DELBOURGO, R
    TWISK, S
    THOMPSON, G
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (02): : 435 - 449
  • [39] Topologically massive Yang-Mills theory and link invariants
    Yildirim, Tuna
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (07):
  • [40] THE HIGGS - AN INFRARED COMPANION OF MASSIVE YANG-MILLS THEORY
    SCHLERETH, H
    PHYSICS LETTERS B, 1995, 354 (1-2) : 125 - 133