Some geometric properties of typical compact convex sets in Hilbert spaces

被引:0
|
作者
De Blasi, FS [1 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, I-00133 Rome, Italy
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space E, for which the metric antiprojection q(X)(e) from e to X has fixed cardinality n + 1 (n is an element of M arbitrary) for every e in a dense subset of IE. A similar study is performed in the case of the metric projection p(X)(e) from e to X where X is a compact subset of E.
引用
收藏
页码:143 / 162
页数:20
相关论文
共 50 条
  • [31] TYPICAL CONVEX-SETS OF CONVEX-SETS
    SCHWARZ, T
    ZAMFIRESCU, T
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 287 - 290
  • [32] Mazur intersection properties for compact and weakly compact convex sets
    Vanderwerff, J
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (02): : 225 - 230
  • [33] Some Properties of GMRES in Hilbert Spaces
    Gasparo, M. G.
    Papini, A.
    Pasquali, A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2008, 29 (11-12) : 1276 - 1285
  • [34] Some Properties of Fuzzy Hilbert Spaces
    B. Daraby
    Z. Solimani
    A. Rahimi
    Complex Analysis and Operator Theory, 2017, 11 : 119 - 138
  • [35] Some Properties of Fuzzy Hilbert Spaces
    Daraby, B.
    Solimani, Z.
    Rahimi, A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (01) : 119 - 138
  • [36] SOME TOPOLOGICAL PROPERTIES OF CONVEX SETS
    KLEE, VL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1954, 60 (05) : 484 - 484
  • [37] Fixed point theorems for compact multimaps on almost Γ-convex sets in generalized convex spaces
    Kuo, Tian-Yuan
    Jeng, Jyh-Chung
    Huang, Young-Ye
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) : 415 - 426
  • [38] SOME INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES
    Dragomir, Sever S.
    FILOMAT, 2009, 23 (03) : 81 - 92
  • [39] Geometric properties of ideal spaces and the capacities of sets
    Klimov, VS
    Panasenko, ES
    SIBERIAN MATHEMATICAL JOURNAL, 1999, 40 (03) : 488 - 499
  • [40] Geometric properties of ideal spaces and the capacities of sets
    V. S. Klimov
    E. S. Panasenko
    Siberian Mathematical Journal, 1999, 40 : 488 - 499