RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.
机构:
Univ Turku, Dept Informat Technol, Turku 20014, Finland
Univ Turku, Turku Ctr Comp Sci, Turku 20014, FinlandUniv Turku, Dept Informat Technol, Turku 20014, Finland
Pahikkala, Tapio
Airola, Antti
论文数: 0引用数: 0
h-index: 0
机构:
Univ Turku, Dept Informat Technol, Turku 20014, Finland
Univ Turku, Turku Ctr Comp Sci, Turku 20014, FinlandUniv Turku, Dept Informat Technol, Turku 20014, Finland
Airola, Antti
Stock, Michiel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Dept Math Modelling Stat & Bioinformat, B-9000 Ghent, BelgiumUniv Turku, Dept Informat Technol, Turku 20014, Finland
Stock, Michiel
论文数: 引用数:
h-index:
机构:
De Baets, Bernard
Waegeman, Willem
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ghent, Dept Math Modelling Stat & Bioinformat, B-9000 Ghent, BelgiumUniv Turku, Dept Informat Technol, Turku 20014, Finland