RLScore: Regularized Least-Squares Learners

被引:0
|
作者
Pahikkala, Tapio [1 ]
Airola, Antti [1 ]
机构
[1] 20014 Univ Turku, Dept Informat Technol, Turku, Finland
基金
芬兰科学院;
关键词
cross-validation; feature selection; kernel methods; Kronecker product kernel; pair-input learning; !text type='python']python[!/text; regularized least-squares;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RLScore is a Python open source module for kernel based machine learning. The library provides implementations of several regularized least-squares (RLS) type of learners. RLS methods for regression and classification, ranking, greedy feature selection, multi-task and zero-shot learning, and unsupervised classification are included. Matrix algebra based computational short-cuts are used to ensure efficiency of both training and cross-validation. A simple API and extensive tutorials allow for easy use of RLScore.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CONSTRAINED REGULARIZED LEAST-SQUARES PROBLEMS
    ELFVING, T
    LECTURE NOTES IN MATHEMATICS, 1991, 1497 : 153 - 166
  • [2] Regularized Least-Squares for parse ranking
    Tsivtsivadze, E
    Pahikkala, T
    Pyysalo, S
    Boberg, J
    Mylläri, A
    Salakoski, T
    ADVANCES IN INTELLIGENT DATA ANALYSIS VI, PROCEEDINGS, 2005, 3646 : 464 - 474
  • [3] Discriminatively regularized least-squares classification
    Xue, Hui
    Chen, Songcan
    Yang, Qiang
    PATTERN RECOGNITION, 2009, 42 (01) : 93 - 104
  • [4] MULTIGRID PRECONDITIONING FOR REGULARIZED LEAST-SQUARES PROBLEMS
    Bolten, Matthias
    Kilmer, Misha E.
    Maclachlan, Scott
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (05): : S271 - S295
  • [5] Optimal Rates for the Regularized Least-Squares Algorithm
    A. Caponnetto
    E. De Vito
    Foundations of Computational Mathematics, 2007, 7 : 331 - 368
  • [6] Optimal rates for the regularized least-squares algorithm
    Caponnetto, A.
    De Vito, E.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2007, 7 (03) : 331 - 368
  • [7] Sparsity regularized recursive total least-squares
    Tanc, A. Korhan
    DIGITAL SIGNAL PROCESSING, 2015, 40 : 176 - 180
  • [8] Efficient retrieval of the regularized least-squares solution
    Sundaram, R
    OPTICAL ENGINEERING, 1998, 37 (04) : 1283 - 1289
  • [9] Model selection for regularized least-squares classification
    Yang, HH
    Wang, XY
    Wang, Y
    Gao, HH
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 565 - 572
  • [10] A direct method for a regularized least-squares problem
    Elfving, Tommy
    Skoglund, Ingegerd
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (08) : 649 - 675