Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue

被引:206
|
作者
Young, D. Adam [1 ]
Choi, Yu Suk [1 ]
Engler, Adam J. [1 ]
Christman, Karen L. [1 ]
机构
[1] Univ Calif San Diego, Dept Bioengn, Sanford Consortium Regenerat Med, La Jolla, CA 92037 USA
关键词
Adipose tissue engineering; Stem cell; Cell morphology; Soft tissue biomechanics; EXTRACELLULAR-MATRIX; GENE-EXPRESSION; DIFFERENTIATION; SCAFFOLD; DESIGN; SHAPE;
D O I
10.1016/j.biomaterials.2013.07.103
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Biochemical and biomechanical extracellular matrix (ECM) cues have recently been shown to play a role in stimulating stem cell differentiation towards several lineages, though how they combine to induce adipogenesis has been less well studied. The objective of this study was to recapitulate both the ECM composition and mechanical properties of adipose tissue in vitro to stimulate adipogenesis of human adipose-derived stem cells (ASCs) in the absence of exogenous adipogenic growth factors and small molecules. Adipose specific ECM biochemical cues have been previously shown to influence adipogenic differentiation; however, the ability of biomechanical cues to promote adipogenesis has been less defined. Decellularized human lipoaspirate was used to functionalize polyacrylamide gels of varying stiffness to allow the cells to interact with adipose-specific ECM components. Culturing ASCs on gels that mimicked the native stiffness of adipose tissue (2 kPa) significantly upregulated adipogenic markers, in the absence of exogenous adipogenic growth factors and small molecules. As substrate stiffness increased, the cells became more spread, lost their rounded morphology, and failed to upregulate adipogenic markers. Together these data imply that as with other lineages, mechanical cues are capable of regulating adipogenesis in ASCs. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8581 / 8588
页数:8
相关论文
共 50 条
  • [41] Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells
    Trumbull, Andrew
    Subramanian, Gayathri
    Yildirim-Ayan, Eda
    BIOMEDICAL ENGINEERING ONLINE, 2016, 15
  • [42] Skin Tissue Engineering: Application of Adipose-Derived Stem Cells
    Klar, Agnes S.
    Zimoch, Jakub
    Biedermann, Thomas
    BIOMED RESEARCH INTERNATIONAL, 2017, 2017
  • [43] Mechanoresponsive musculoskeletal tissue differentiation of adipose-derived stem cells
    Andrew Trumbull
    Gayathri Subramanian
    Eda Yildirim-Ayan
    BioMedical Engineering OnLine, 15
  • [44] Adipose-derived stem cells in dentistry
    Tobita, Morikuni
    JOURNAL OF ORAL BIOSCIENCES, 2013, 55 (03) : 122 - 126
  • [45] Osteogenesis of Adipose-Derived Stem Cells
    Grottkau, Brian E.
    Lin, Yunfeng
    BONE RESEARCH, 2013, 1 : 133 - 145
  • [46] Adipose-Derived Stem Cells as Source for Tissue Repair and Regeneration
    Prat, Maria
    Pietronave, Stefano
    Zamperone, Andrea
    ADULT STEM CELL STANDARDIZATION, 2011, 1 : 191 - 208
  • [47] Osteogenesis of Adipose-Derived Stem Cells
    Brian E. Grottkau
    Yunfeng Lin
    Bone Research, 2013, 1 : 133 - 145
  • [48] Osteogenesis of Adipose-Derived Stem Cells
    Brian E. Grottkau
    Yunfeng Lin
    Bone Research, 2013, (02) : 133 - 145
  • [49] Adipose-derived stem cells and chondrogenesis
    Wei, Y.
    Sun, X.
    Wang, W.
    Hu, Y.
    CYTOTHERAPY, 2007, 9 (08) : 712 - 716
  • [50] Adipose-Derived Stromal/Stem Cells
    Baer, Patrick C.
    CELLS, 2020, 9 (09)