On grand Sobolev spaces and pointwise description of Banach function spaces

被引:8
|
作者
Jain, Pankaj [1 ]
Molchanova, Anastasia [2 ,3 ]
Singh, Monika [4 ]
Vodopyanov, Sergey [2 ]
机构
[1] South Asian Univ, Dept Math, New Delhi 110021, India
[2] Sobolev Inst Math, Acad Koptyug Ave 4, Novosibirsk 630090, Russia
[3] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[4] Univ Delhi, Dept Math, Lady Shri Ram Coll Women, New Delhi 110024, India
基金
奥地利科学基金会;
关键词
Banach function space; Grand Sobolev space; Maximal function; Pointwise description; WEIGHTED NORM INEQUALITIES; LEBESGUE SPACES; PARABOLIC EQUATIONS; MAXIMAL FUNCTIONS; INTEGRABILITY; REGULARITY; EXISTENCE;
D O I
10.1016/j.na.2020.112100
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain a pointwise description of functions belonging to function spaces with the lattice property. In particular, it is valid for Banach function spaces provided that the Hardy-Littlewood maximal operator is bounded. We also study weighted grand Sobolev spaces, defined on arbitrary open sets Omega (of finite or infinite measure) in R-n, and provide pointwise description of them. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:17
相关论文
共 50 条
  • [21] COMPACTNESS OF EMBEDDINGS BETWEEN BANACH-SPACES AND APPLICATIONS TO SOBOLEV SPACES
    CANAVATI, JA
    GALAZFONTES, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1990, 41 : 511 - 525
  • [22] ON ISOMORPHISMS OF ANISOTROPIC SOBOLEV SPACES WITH CLASSICAL BANACH-SPACES AND A SOBOLEV TYPE EMBEDDING THEOREM
    PELCZYNSKI, A
    SENATOR, K
    STUDIA MATHEMATICA, 1986, 84 (02) : 169 - &
  • [23] ON BANACH FUNCTION SPACES
    MURAKAMI, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (05): : 342 - &
  • [24] On the sobolev problem in the complete scale of Banach spaces
    Los' V.N.
    Roitberg Ya.A.
    Ukrainian Mathematical Journal, 1999, 51 (9) : 1330 - 1342
  • [25] Discrete logarithmic Sobolev inequalities in Banach spaces
    Cordero-Erausquin, Dario
    Eskenazis, Alexandros
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (02):
  • [26] Description of substitution operators of Sobolev spaces
    Vodop'yanov, S.K.
    Doklady Akademii Nauk, 2005, 400 (01) : 11 - 15
  • [27] Description of composition operators of Sobolev spaces
    Vodop'yanov, SK
    DOKLADY MATHEMATICS, 2005, 71 (01) : 5 - 9
  • [28] BANACH SPACES OF GLT SEQUENCES AND FUNCTION SPACES
    Kumar, V. B. Kiran
    Rajan, Rahul
    Sarathkumar, N. S.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 295 - 316
  • [29] INTERPOLATION IN SOBOLEV FUNCTION SPACES
    NITSCHE, J
    NUMERISCHE MATHEMATIK, 1969, 13 (04) : 334 - &
  • [30] Bregman Asymptotic Pointwise Nonexpansive Mappings in Banach Spaces
    Pang, Chin-Tzong
    Naraghirad, Eskandar
    ABSTRACT AND APPLIED ANALYSIS, 2013,