Locking-free isogeometric collocation methods for spatial Timoshenko rods

被引:119
|
作者
Auricchio, F. [1 ,2 ,3 ]
da Veiga, L. Beirao [4 ]
Kiendl, J. [1 ]
Lovadina, C. [3 ,5 ]
Reali, A. [1 ,2 ,3 ]
机构
[1] Univ Pavia, Dept Civil Engn & Architecture, I-27100 Pavia, Italy
[2] IUSS, Ctr Adv Numer Simulat CESNA, I-27100 Pavia, Italy
[3] IMATI CNR, Pavia, Italy
[4] Univ Milan, Math Dept F Enriques, I-20133 Milan, Italy
[5] Univ Pavia, Dept Math, I-27100 Pavia, Italy
基金
欧洲研究理事会;
关键词
Isogeometric analysis; Collocation methods; NURBS; Spatial Timoshenko rod; Locking-free methods; FINITE-ELEMENTS; NURBS; SIMULATION;
D O I
10.1016/j.cma.2013.03.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work we present the application of isogeometric collocation techniques to the solution of spatial Timoshenko rods. The strong form equations of the problem are presented in both displacement-based and mixed formulations and are discretized via NURBS-based isogeometric collocation. Several numerical experiments are reported to test the accuracy and efficiency of the considered methods, as well as their applicability to problems of practical interest. In particular, it is shown that mixed collocation schemes are locking-free independently of the choice of the polynomial degrees for the unknown fields. Such an important property is also analytically proven. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 126
页数:14
相关论文
共 50 条
  • [41] A Survey on Isogeometric Collocation Methods with Applications
    Ren, Jingwen
    Lin, Hongwei
    MATHEMATICS, 2023, 11 (02)
  • [42] Isogeometric locking-free plate element: A simple first order shear deformation theory for functionally graded plates
    Yin, Shuohui
    Hale, Jack S.
    Yu, Tiantang
    Tinh Quoc Bui
    Bordas, Stephane P. A.
    COMPOSITE STRUCTURES, 2014, 118 : 121 - 138
  • [43] A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS
    Da Veiga, L. Beirao
    Hughes, T. J. R.
    Kiendl, J.
    Lovadina, C.
    Niiranen, J.
    Reali, A.
    Speleers, H.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08): : 1519 - 1551
  • [44] Meshless local Petrov-Galerkin method for rotating Timoshenko beam: A locking-free shape function formulation
    Panchore, V.
    Ganguli, R.
    Omkar, S.N.
    CMES - Computer Modeling in Engineering and Sciences, 2015, 108 (04): : 215 - 237
  • [45] Meshless Local Petrov-Galerkin Method for Rotating Timoshenko Beam: a Locking-Free Shape Function Formulation
    Panchore, V.
    Ganguli, R.
    Omkar, S. N.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2015, 108 (04): : 215 - 237
  • [46] LOCKING-FREE DEGENERATED ISOPARAMETRIC SHELL ELEMENT
    章向明
    王安稳
    何汉林
    AppliedMathematicsandMechanics(EnglishEdition), 2001, (05) : 609 - 617
  • [47] Locking-free degenerated isoparametric shell element
    Zhang, XM
    Wang, AW
    He, HL
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (05) : 609 - 617
  • [48] Locking-free DGFEM for elasticity problems in polygons
    Wihler, TP
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) : 45 - 75
  • [49] A conforming locking-free approximation for a Koiter shell
    Ferchichi, Hanen
    Aouadi, Saloua Mani
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 374 - 389
  • [50] Locking-free piezoelectric MITC shell elements
    Kögl, M
    Bucalem, ML
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 392 - 395