Multimodal Co-training for Fake News Identification Using Attention-aware Fusion

被引:4
|
作者
Das Bhattacharjee, Sreyasee [1 ]
Yuan, Junsong [1 ]
机构
[1] SUNY Buffalo, Buffalo, NY 14260 USA
来源
关键词
Fake news detection; Rumor; Multimodal classification; Co-training; Attention; Feature fusion;
D O I
10.1007/978-3-031-02444-3_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rapid dissemination of fake news to purportedly mislead the large population of online information sharing platforms is a societal problem receiving increasing attention. A critical challenge in this scenario is that a multimodal information content, e.g., supporting text with photos, shared online, is frequently created with an aim to attract attention of the readers. While 'fakeness' does not exclusively synonymize 'falsity' in general, the objective behind creating such content may vary widely. It may be for depicting additional information to clarify. However, very frequently it may also be for propagating fabricated or biased information to purposefully mislead, or for intentionally manipulating the image to fool the audience. Therefore, our objective in this work is evaluating the veracity of a news content by addressing a two-fold task: (1) if the image or the text component of the content is fabricated and (2) if there are inconsistencies between image and text component of the content, which may prove the image to be out of context. We propose an effective attention-aware joint representation learning framework that learns the comprehensive fine-grained data pattern by correlating each word in the text component to each potential object region in the image component. By designing a novel multimodal co-training mechanism leveraging the class label information within a contrastive loss-based optimization, the proposed method exhibits a significant promise in identifying cross-modal inconsistencies. The consistent out-performances over other state-of-the-art works (both in terms of accuracy and F1-score) in two large-scale datasets, which cover different types of fake news characteristics (defining the information veracity at various layers of details like 'false', 'false connection', 'misleading', and 'manipulative' contents), topics, and domains demonstrate the feasibility of our approach.
引用
收藏
页码:282 / 296
页数:15
相关论文
共 50 条
  • [31] Attention-Aware Network and Multi-Loss Joint Training Method for Vehicle Re-Identification
    Zhou, Hui
    Li, Chen
    Zhang, Lipei
    Song, Wei
    PROCEEDINGS OF 2020 IEEE 4TH INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC 2020), 2020, : 1330 - 1334
  • [32] Similarity-Aware Multimodal Prompt Learning for fake news detection
    Jiang, Ye
    Yu, Xiaomin
    Wang, Yimin
    Xu, Xiaoman
    Song, Xingyi
    Maynard, Diana
    INFORMATION SCIENCES, 2023, 647
  • [33] AMFB: Attention based multimodal Factorized Bilinear Pooling for multimodal Fake News Detection
    Kumari, Rina
    Ekbal, Asif
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [34] CAF-ODNN: Complementary attention fusion with optimized deep neural network for multimodal fake news detection
    Luvembe, Alex Munyole
    Li, Weimin
    Li, Shaohau
    Liu, Fangfang
    Wu, Xing
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (03)
  • [35] Adaptive Attention-Aware Network for unsupervised person re-identification
    Zhang, Wenfeng
    Wei, Zhiqiang
    Huang, Lei
    Xie, Kezhen
    Qin, Qibing
    NEUROCOMPUTING, 2020, 411 : 20 - 31
  • [36] Attention-Aware Dual-Stream Network for Multimodal Face Anti-Spoofing
    Deng, Pengchao
    Ge, Chenyang
    Qiao, Xin
    Wei, Hao
    Sun, Yuan
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4258 - 4271
  • [37] KAN: Knowledge-aware Attention Network for Fake News Detection
    Dun, Yaqian
    Tu, Kefei
    Chen, Chen
    Hou, Chunyan
    Yuan, Xiaojie
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 81 - 89
  • [38] Attention-Aware Multiple Granularities Network for Player Re-Identification
    An, Qi
    Cui, Kuilong
    Liu, Rongshuai
    Wang, Chuanming
    Qi, Mengshi
    Ma, Huadong
    PROCEEDINGS OF THE 5TH ACM INTERNATIONAL WORKSHOP ON MULTIMEDIA CONTENT ANALYSIS IN SPORTS, MMSPORTS 2022, 2022, : 137 - 144
  • [39] Multimodal Fake News Detection Based on Contrastive Learning and Similarity Fusion
    Li, Yan
    Jia, Kaidi
    Wang, Qiyuan
    IEEE ACCESS, 2024, 12 : 155351 - 155364
  • [40] MFIR: Multimodal fusion and inconsistency reasoning for explainable fake news detection
    Wu, Lianwei
    Long, Yuzhou
    Gao, Chao
    Wang, Zhen
    Zhang, Yanning
    INFORMATION FUSION, 2023, 100