Strong-coupling charge density wave in monolayer TiSe2

被引:13
|
作者
Watson, Matthew D. [1 ,2 ]
Rajan, Akhil [1 ]
Antonelli, Tommaso [1 ]
Underwood, Kaycee [1 ]
Markovic, Igor [1 ,5 ]
Mazzola, Federico [1 ]
Clark, Oliver J. [1 ]
Siemann, Gesa-Roxanne [1 ]
Biswas, Deepnarayan [1 ,6 ]
Hunter, Andrew [1 ]
Jandura, Sven [1 ]
Reichstetter, Janika [1 ]
McLaren, Martin [1 ]
Le Fevre, Patrick [3 ]
Vinai, Giovanni [4 ]
King, Philip D. C. [1 ]
机构
[1] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Fife, Scotland
[2] Diamond Light Source, Harwell Campus, Didcot OX11 0DE, Oxon, England
[3] Synchrotron SOLEIL, St Aubin BP48, F-91192 Gif Sur Yvette, France
[4] CNR, Ist Off Mat IOM, Lab TASC, Area Sci Pk,SS 14Km 163-5, I-34149 Trieste, Italy
[5] Max Planck Inst Chem Phys Solids, Nothnitzer Str 40, D-01187 Dresden, Germany
[6] Aarhus Univ, Interdisciplinary Nanosci Ctr, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
ARPES; CDW; monolayer; TiSe2; MBE; transition metal dichalcogenides; FILMS;
D O I
10.1088/2053-1583/abafec
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the 2 x 2 charge density wave (CDW) in epitaxially-grown monolayer TiSe2. Our temperature-dependent angle-resolved photoemission spectroscopy measurements indicate a strong-coupling instability, but reveal how not all states couple equally to the symmetry-breaking distortion, with an electron pocket persisting to low temperature as a non-bonding state. We further show how the CDW order can be suppressed by a modest doping of around 0.06(2) electrons per Ti. Our results provide an opportunity for quantitative comparison with a realistic tight-binding model, which emphasises a crucial role of structural aspects of the phase transition in understanding the hybridisation in the ground state. Together, our work provides a comprehensive understanding of the phenomenology of the CDW in TiSe(2)in the 2D limit.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Plasmon Excitations across the Charge-Density-Wave Transition in Single-Layer TiSe2
    Torbatian, Zahra
    Novko, Dino
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (23): : 6045 - 6050
  • [32] Suppression of charge-density-wave order in TiSe2 studied with high-pressure magnetoresistance
    Moulding, Owen
    Muramatsu, Takaki
    Sayers, Charles J.
    Da Como, Enrico
    Friedemann, Sven
    ELECTRONIC STRUCTURE, 2022, 4 (03):
  • [33] Hidden Order and Dimensional Crossover of the Charge Density Waves in TiSe2
    Chen, P.
    Chan, Y. -H.
    Fang, X. -Y.
    Mo, S. -K.
    Hussain, Z.
    Fedorov, A. -V.
    Chou, M. Y.
    Chiang, T. -C.
    SCIENTIFIC REPORTS, 2016, 6
  • [34] Suppression of charge-density formation in TiSe2 by Cu doping
    Bussmann-Holder, A.
    Bishop, A. R.
    PHYSICAL REVIEW B, 2009, 79 (02):
  • [35] Critical Role of the Exchange Interaction for the Electronic Structure and Charge-Density-Wave Formation in TiSe2
    Hellgren, Maria
    Baima, Jacopo
    Bianco, Raffaello
    Calandra, Matteo
    Mauri, Francesco
    Wirtz, Ludger
    PHYSICAL REVIEW LETTERS, 2017, 119 (17)
  • [36] Nonreciprocal charge-density-wave proximity effect in a lateral heterojunction of NbSe2/TiSe2
    Akber, Humaira
    Shan, Huan
    Mao, Yahui
    Yao, Jie
    Zhai, Xiaofang
    Zhao, Aidi
    APPLIED PHYSICS LETTERS, 2024, 124 (07)
  • [37] Splitting of the Ti-3d bands of TiSe2 in the charge-density wave phase
    Ghafari, A.
    Petaccia, L.
    Janowitz, C.
    APPLIED SURFACE SCIENCE, 2017, 396 : 1649 - 1656
  • [38] On the nature of state with a charge-density wave in TiSe2 from data of scanning tunneling microscopy
    Titov, A. N.
    Kuznetsov, M. V.
    Razinkin, A. S.
    PHYSICS OF THE SOLID STATE, 2011, 53 (05) : 1073 - 1077
  • [39] Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles
    Bianco, Raffaello
    Calandra, Matteo
    Mauri, Francesco
    PHYSICAL REVIEW B, 2015, 92 (09)
  • [40] Charge-Density Wave and Superconducting Dome in TiSe2 from Electron-Phonon Interaction
    Calandra, Matteo
    Mauri, Francesco
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)