Geometric Adiabatic Transport in Quantum Hall States

被引:57
|
作者
Klevtsov, S. [1 ]
Wiegmann, P. [2 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
ZUMINO-WITTEN MODELS; QUANTIZATION; CONDUCTANCE;
D O I
10.1103/PhysRevLett.115.086801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that in addition to the Hall conductance and the nondissipative component of the viscous tensor, there exists a third independent transport coefficient, which is precisely quantized. It takes constant values along quantum Hall plateaus. We show that the new coefficient is the Chern number of a vector bundle over moduli space of surfaces of genus 2 or higher and therefore cannot change continuously along the plateau. As such, it does not transpire on a sphere or a torus. In the linear response theory, this coefficient determines intensive forces exerted on electronic fluid by adiabatic deformations of geometry and represents the effect of the gravitational anomaly. We also present the method of computing the transport coefficients for quantum Hall states.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Electron interactions and transport between coupled quantum hall edge states
    Tomlinson, JW
    Caux, JS
    Chalker, JT
    PHYSICAL REVIEW LETTERS, 2005, 94 (08)
  • [42] Minimal excitation states for heat transport in driven quantum Hall systems
    Vannucci, Luca
    Ronetti, Flavio
    Rech, Jerime
    Ferraro, Dario
    Jonckheere, Thibaut
    Martin, Thierry
    Sassetti, Maura
    PHYSICAL REVIEW B, 2017, 95 (24)
  • [43] Geometric properties of adiabatic quantum thermal machines
    Bhandari, Bibek
    Terren Alonso, Pablo
    Taddei, Fabio
    von Oppen, Felix
    Fazio, Rosario
    Arrachea, Liliana
    PHYSICAL REVIEW B, 2020, 102 (15)
  • [44] Adiabatic quantum counting by geometric phase estimation
    Chi Zhang
    Zhaohui Wei
    Anargyros Papageorgiou
    Quantum Information Processing, 2010, 9 : 369 - 383
  • [45] Edge states tunneling in the fractional, quantum Hall effect: integrability and transport
    Saleur, H
    COMPTES RENDUS PHYSIQUE, 2002, 3 (06) : 685 - 695
  • [46] Electrical manipulation of edge states in graphene and the effect on quantum Hall transport
    Ostahie, B.
    Nita, M.
    Aldea, A.
    PHYSICAL REVIEW B, 2015, 91 (15):
  • [47] Adiabatic quantum counting by geometric phase estimation
    Zhang, Chi
    Wei, Zhaohui
    Papageorgiou, Anargyros
    QUANTUM INFORMATION PROCESSING, 2010, 9 (03) : 369 - 383
  • [48] GEOMETRIC AMPLITUDE FACTORS IN ADIABATIC QUANTUM TRANSITIONS
    BERRY, MV
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1990, 430 (1879): : 405 - 411
  • [49] Integrability of the quantum adiabatic evolution and geometric phases
    Cassinelli, G
    DeVito, E
    Levrero, A
    JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (12) : 6101 - 6118
  • [50] Possibility of an adiabatic transition between ν=1 and ν=1/3 quantum Hall states in a narrow wire
    Chklovskii, DB
    Halperin, BI
    PHYSICA E, 1997, 1 (1-4): : 75 - 79