Edge-partitions of graphs of nonnegative characteristic and their game coloring numbers

被引:9
|
作者
Wang, WF [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
graph of nonnegative characteristic; game coloring number; girth; cycle; edge-decomposition;
D O I
10.1016/j.disc.2005.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of nonnegative characteristic and let g(G) and Delta(G) be its girth and maximum degree, respectively. We show that G has an edge-partition into a forest and a subgraph H so that (1) Delta(H) <= 1 if g(G) >= 11; (2) Delta(H) <= 2 if g(G) >= 7; (3) Delta (H) <= 4 if either g(G) >= 5 or G does not contain 4-cycles and 5 -cycles; (4) Delta(H)<= 6 if G does not contain 4-cycles. These results are applied to find the following upper bounds for the game coloring number col(g) (G) of G: (1) col(g) (G) <= 5 if g (G) >= 11; (2) colg (G) <= 6 if g(G) >= 7; (3) colg(G) <= 8 if either g(G) >= 5 or G contains no 4-cycles and 5-cycles; (4) col(g)(G) <= 10 if G does not contain 4-cycles. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [21] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Charles Dunn
    David Morawski
    Jennifer Firkins Nordstrom
    Order, 2015, 32 : 347 - 361
  • [22] The Relaxed Edge-Coloring Game and k-Degenerate Graphs
    Dunn, Charles
    Morawski, David
    Nordstrom, Jennifer Firkins
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2015, 32 (03): : 347 - 361
  • [23] Graphs, partitions and Fibonacci numbers
    Knopfmacher, Arnold
    Tichy, Robert F.
    Wagner, Stephan
    Ziegler, Volker
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (10) : 1175 - 1187
  • [24] Linear coloring of graphs without 4-cycles and embeddable in a surface of nonnegative Euler characteristic
    Wang, Weifan
    Wang, Yiqiao
    Sun, Haina
    UTILITAS MATHEMATICA, 2014, 95 : 199 - 213
  • [25] On the sizes of graphs embeddable in surfaces of nonnegative Euler characteristic and their applications to edge choosability
    Wang, Wei-Fan
    Lih, Ko-Wei
    EUROPEAN JOURNAL OF COMBINATORICS, 2007, 28 (01) : 111 - 120
  • [26] The independence coloring game on graphs
    Bresar, Bostjan
    Stesl, Dasa
    QUAESTIONES MATHEMATICAE, 2022, 45 (09) : 1413 - 1434
  • [27] Injective Edge Coloring of Graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Dominic, Charles
    Cruz, J. Pedro
    FILOMAT, 2019, 33 (19) : 6411 - 6423
  • [28] The Dominator Edge Coloring of Graphs
    Li, Minhui
    Zhang, Shumin
    Wang, Caiyun
    Ye, Chengfu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [29] Edge coloring signed graphs
    Behr, Richard
    DISCRETE MATHEMATICS, 2020, 343 (02)
  • [30] Semistrong edge coloring of graphs
    Gyárfás, A
    Hubenko, A
    JOURNAL OF GRAPH THEORY, 2005, 49 (01) : 39 - 47