USING SUPERVISED DEEP LEARNING FOR HUMAN AGE ESTIMATION PROBLEM

被引:4
|
作者
Drobnyh, K. A. [1 ]
Polovinkin, A. N. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
关键词
Machine Learning; Age Estimation; Supervised Deep Learning; Active Appearance Model; Bio-Inspired Feature; Support Vector Machine;
D O I
10.5194/isprs-archives-XLII-2-W4-97-2017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popular publicly available FG-NET database, which contains 1002 images with a broad variety of light, pose, and expression. LOPO (leave-one-person-out) method was used to estimate the accuracy. Experiments demonstrated that adding supervised deep learning features has improved accuracy for some basic models. For example, adding the features to an active appearance model gave the 4% gain (the error decreased from 4.59 to 4.41).
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [31] Deep Conditional Distribution Learning for Age Estimation
    Sun, Haomiao
    Pan, Hongyu
    Han, Hu
    Shan, Shiguang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2021, 16 : 4679 - 4690
  • [32] Bone Age Estimation and Prediction of Final Adult Height Using Deep Learning
    Suh, Junghwan
    Heo, Jinkyoung
    Kim, Su Jin
    Park, Soyeong
    Jung, Mo Kyung
    Choi, Han Saem
    Choi, Youngha
    Oh, Jun Suk
    Lee, Hae In
    Lee, Myeongseob
    Song, Kyungchul
    Kwon, Ahreum
    Chae, Hyun Wook
    Kim, Ho-Seong
    YONSEI MEDICAL JOURNAL, 2023, 64 (11) : 679 - 686
  • [33] Bone age estimation from carpal radiography images using deep learning
    Ding, Yih An
    Mutz, Filipe
    Coco, Klaus F.
    Pinto, Luiz A.
    Komati, Karin S.
    EXPERT SYSTEMS, 2020, 37 (06)
  • [34] AGE ESTIMATION FROM SLEEP USING DEEP LEARNING PREDICTS LIFE EXPECTANCY
    Brink-Kjaer, Andreas
    Leary, Eileen
    Sun, Haoqi
    Westover, M. Brandon
    Stone, Katie
    Peppard, Paul
    Lane, Nancy
    Cawthon, Peggy
    Redline, Susan
    Jennum, Poul
    Mignot, Emmanuel
    Sorensen, Helge
    SLEEP, 2022, 45 : A143 - A143
  • [35] Postnatal gestational age estimation of newborns using Small Sample Deep Learning
    Torres, Mercedes Torres
    Valstar, Michel
    Henry, Caroline
    Ward, Carole
    Sharkey, Don
    IMAGE AND VISION COMPUTING, 2019, 83-84 : 87 - 99
  • [36] Skeletal Age Estimation from Hand Radiographs Using Ensemble Deep Learning
    Hirasen, Divyan
    Pillay, Verosha
    Viriri, Serestina
    Gwetu, Mandlenkosi
    PATTERN RECOGNITION (MCPR 2021), 2021, 12725 : 173 - 183
  • [37] Human Pose Estimation Using Deep Learning: A Systematic Literature Review
    Samkari, Esraa
    Arif, Muhammad
    Alghamdi, Manal
    Al Ghamdi, Mohammed A.
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1612 - 1659
  • [38] Human pose, hand and mesh estimation using deep learning: a survey
    Toshpulatov, Mukhiddin
    Lee, Wookey
    Lee, Suan
    Roudsari, Arousha Haghighian
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (06): : 7616 - 7654
  • [39] Human pose, hand and mesh estimation using deep learning: a survey
    Mukhiddin Toshpulatov
    Wookey Lee
    Suan Lee
    Arousha Haghighian Roudsari
    The Journal of Supercomputing, 2022, 78 : 7616 - 7654
  • [40] Estimation on Human Motion Posture Using Improved Deep Reinforcement Learning
    Ma, Wenjing
    Zhao, Jianguang
    Zhu, Guangquan
    Journal of Computers (Taiwan), 2023, 34 (04) : 97 - 110