USING SUPERVISED DEEP LEARNING FOR HUMAN AGE ESTIMATION PROBLEM

被引:4
|
作者
Drobnyh, K. A. [1 ]
Polovinkin, A. N. [1 ]
机构
[1] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
关键词
Machine Learning; Age Estimation; Supervised Deep Learning; Active Appearance Model; Bio-Inspired Feature; Support Vector Machine;
D O I
10.5194/isprs-archives-XLII-2-W4-97-2017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic facial age estimation is a challenging task upcoming in recent years. In this paper, we propose using the supervised deep learning features to improve an accuracy of the existing age estimation algorithms. There are many approaches solving the problem, an active appearance model and the bio-inspired features are two of them which showed the best accuracy. For experiments we chose popular publicly available FG-NET database, which contains 1002 images with a broad variety of light, pose, and expression. LOPO (leave-one-person-out) method was used to estimate the accuracy. Experiments demonstrated that adding supervised deep learning features has improved accuracy for some basic models. For example, adding the features to an active appearance model gave the 4% gain (the error decreased from 4.59 to 4.41).
引用
收藏
页码:97 / 100
页数:4
相关论文
共 50 条
  • [1] Using Unsupervised Deep Learning for Human Age Estimation Problem
    Drobnyh, Klim
    PROCEEDINGS OF THE SECOND INTERNATIONAL AFRO-EUROPEAN CONFERENCE FOR INDUSTRIAL ADVANCEMENT (AECIA 2015), 2016, 427 : 443 - 450
  • [2] Age estimation using deep learning
    Zaghbani, Soumaya
    Boujneh, Noureddine
    Bouhlel, Med Salim
    COMPUTERS & ELECTRICAL ENGINEERING, 2018, 68 : 337 - 347
  • [3] Human Age Estimation Using Deep Learning from Gait Data
    Pathan, Refat Khan
    Uddin, Mohammad Amaz
    Nahar, Nazmun
    Ara, Ferdous
    Hossain, Mohammad Shahadat
    Andersson, Karl
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2021, 2021, 1435 : 281 - 294
  • [4] Deep Learning with PCANet for Human Age Estimation
    Zheng, DePeng
    Du, JiXiang
    Fan, WenTao
    Wang, Jing
    Zhai, ChuanMin
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 300 - 310
  • [5] Estimation of the Biological Age of the Human Brain Using Multitask Self-Supervised Learning
    Sajjadi, Zahrasadat
    Hamzebeigi, Soheil
    Soryani, Mohsen
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 170 - 174
  • [6] Deep Learning for Age Estimation Using EfficientNet
    Aruleba, Idowu
    Viriri, Serestina
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 407 - 419
  • [7] Deep Learning for age Estimation
    Ammous, Donia
    Kammoun, Fahmi
    Masmoudi, Nouri
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 322 - 329
  • [8] Apparent Age Estimation Using Ensemble of Deep Learning Models
    Malli, Refik Can
    Aygun, Mehmet
    Ekenel, Hamm Kemal
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 714 - 721
  • [9] Practical age estimation using deep label distribution learning
    Huiying ZHANG
    Yu ZHANG
    Xin GENG
    Frontiers of Computer Science, 2021, (03) : 42 - 47
  • [10] Practical age estimation using deep label distribution learning
    Zhang, Huiying
    Zhang, Yu
    Geng, Xin
    FRONTIERS OF COMPUTER SCIENCE, 2021, 15 (03)