Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

被引:33
|
作者
Wu, Jincheng [1 ]
Tzanakakis, Emmanuel S. [1 ,2 ,3 ,4 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Biomed Engn, Buffalo, NY 14260 USA
[3] New York State Ctr Excellence Bioinformat & Life, Buffalo, NY 14203 USA
[4] SUNY Buffalo, Western New York Stem Cell Culture & Anal Ctr, Buffalo, NY 14214 USA
基金
美国国家卫生研究院;
关键词
Human embryonic stem cells; Induced pluripotent stem cells; Heterogeneity; Single-cell analysis; Time-lapse microscopy; Flow cytometry; Multiple displacement amplification; Mass cytometry; Stochastic multiscale model; Gene expression noise; STOCHASTIC GENE-EXPRESSION; OLIGONUCLEOTIDE MICROARRAY ANALYSIS; IN-VIVO; RNA-SEQ; BALANCE MODELS; SELF-RENEWAL; RAMAN MICROSPECTROSCOPY; MICROFLUIDIC PLATFORMS; PHENOTYPIC DIVERSITY; REGULATORY NETWORKS;
D O I
10.1016/j.biotechadv.2013.09.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1047 / 1062
页数:16
相关论文
共 50 条
  • [21] Single-Cell Mass Spectrometry Approaches to Explore Cellular Heterogeneity
    Zhang, Linwen
    Vertes, Akos
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (17) : 4466 - 4477
  • [22] Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage
    Dulken, Ben W.
    Leeman, Dena S.
    Boutet, Stephane C.
    Hebestreit, Katja
    Brunet, Anne
    CELL REPORTS, 2017, 18 (03): : 777 - 790
  • [23] Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations
    Wilson, Nicola K.
    Kent, David G.
    Buettner, Florian
    Shehata, Mona
    Macaulay, Iain C.
    Calero-Nieto, Fernando J.
    Castillo, Manuel Sanchez
    Oedekoven, Caroline A.
    Diamanti, Evangelia
    Schulte, Reiner
    Ponting, Chris P.
    Voet, Thierry
    Caldas, Carlos
    Stingl, John
    Green, Anthony R.
    Theis, Fabian J.
    Goettgens, Berthold
    CELL STEM CELL, 2015, 16 (06) : 712 - 724
  • [24] Kinetic Modeling of ABCG2 Transporter Heterogeneity: A Quantitative, Single-Cell Analysis of the Side Population Assay
    Prasanphanich, Adam F.
    White, Douglas E.
    Gran, Margaret A.
    Kemp, Melissa L.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (11)
  • [25] Deconstructing pulmonary fibrosis at single-cell resolution
    Kropski, Jonathan A.
    Calvi, Carla L.
    Habermann, A. Chris
    Guitierrez, Austin
    Winters, Nichelle
    Rodenberry, John C.
    McDonnell, Wyatt
    Shaver, Ciara M.
    Ware, Lorraine B.
    Mallal, Simon
    Blackwell, Timothy S.
    Banovich, Nicholas E.
    FASEB JOURNAL, 2019, 33
  • [26] Deconstructing Pulmonary Fibrosis at Single-Cell Resolution
    Habermann, A.
    Gutierrez, A. J.
    Bui, L. T.
    Yahn, S. L.
    Winters, N. I.
    Calvi, C. L.
    Peter, L.
    Chung, M.
    Taylor, C. J.
    Ding, G.
    Wood, L.
    Bacchetta, M. J.
    Shaver, C. M.
    Ware, L. B.
    Bremmer, R. M.
    Walia, R.
    Blackwell, T. S.
    Banovich, N.
    Kropski, J. A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201
  • [27] Single-Cell Analysis of Mesenchymal Stem Cells Reveals Their Molecular and Functional Heterogeneity in Myeloma
    Mehdi, Syed J.
    Johnson, Sarah K.
    Epstein, Joshua
    Khan, Sharmin
    Ling, Wen
    Shelton, Randal
    Zangari, Maurizio
    Qu, Pingping
    Hoering, Antje
    van Rhee, Frits
    Schinke, Carolina D.
    Thanendrarajan, Sharmilan
    Wardell, Christopher P.
    Davies, Faith E.
    Morgan, Gareth J.
    Yaccoby, Shmuel
    BLOOD, 2017, 130
  • [28] Unraveling Heterogeneity of Aged Hematopoietic Stem Cells By Single-Cell RNA Sequence Analysis
    Koide, Shuhei
    Oshima, Motohiko
    Nishiyama, Akira
    Murakami, Koichi
    Yamada, Yuta
    Itokawa, Naoki
    Nakajima-Takagi, Yaeko
    Zheng, Zhiqian
    Tomohiko, Tamura
    Iwama, Atsushi
    BLOOD, 2021, 138
  • [29] Discrimination of Dental Pulp Stem Cell Regenerative Heterogeneity by Single-Cell Raman Spectroscopy
    Alraies, Amr
    Canetta, Elisabetta
    Waddington, Rachel J.
    Moseley, Ryan
    Sloan, Alastair J.
    TISSUE ENGINEERING PART C-METHODS, 2019, 25 (08) : 489 - 499
  • [30] Bioinformatics for Single-Cell Transcriptomic Analysis of Tumor Heterogeneity
    Shimamura, Teppei
    CANCER SCIENCE, 2018, 109 : 352 - 352