Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

被引:13
|
作者
Si, P. Z. [1 ,2 ]
Wang, X. L. [1 ,2 ]
Xiao, X. F. [1 ,2 ]
Chen, H. J. [1 ,2 ]
Liu, X. Y. [3 ]
Jiang, L. [1 ,2 ]
Liu, J. J. [3 ]
Jiao, Z. W. [1 ,2 ]
Ge, H. L. [1 ,2 ]
机构
[1] China Jiliang Univ, Zhejiang Key Lab Magnet Mat, Hangzhou 310018, Zhejiang, Peoples R China
[2] China Jiliang Univ, Dept Phys, Hangzhou 310018, Zhejiang, Peoples R China
[3] Ningbo Univ, Fac Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
基金
浙江省自然科学基金; 中国博士后科学基金;
关键词
laser ablation; nanoparticles; CrO2; high oxygen pressure annealing; magnetic properties; CHROMIUM-OXIDE; DEPOSITION; MORPHOLOGY; CRO2;
D O I
10.4283/JMAG.2015.20.3.211
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cr2O3 nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable CrO2 phase was obtained through the subsequent oxidation of Cr2O3 nanoparticles under O-2 with gas pressures of up to 40 MPa. The as-prepared Cr2O3 nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable CrO2 from as-dried Cr2O3 nanoparticles, and the Cr2O3 nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The Cr2O3/CrO2 nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of CrO2 due to the elimination of uncompensated surface spins over the Cr2O3 nanoparticles when exposed to a high pressure of O-2 and/or possible phase segregation that results in a smaller grain size for both Cr2O3 and CrO2.
引用
收藏
页码:211 / 214
页数:4
相关论文
共 50 条
  • [21] Dielectric Constant, Exchange Bias, and Magnetodielectric Effect in CrO2/Cr2O3 Nanostructures
    Xiaoyu Zhang
    Yajie Chen
    Yang Tan
    Vincent G. Harris
    Journal of Superconductivity and Novel Magnetism, 2022, 35 : 1719 - 1725
  • [22] Dielectric Constant, Exchange Bias, and Magnetodielectric Effect in CrO2/Cr2O3 Nanostructures
    Zhang, Xiaoyu
    Chen, Yajie
    Tan, Yang
    Harris, Vincent G.
    JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2022, 35 (06) : 1719 - 1725
  • [23] Highly Insensitive/Reactive Thermite Prepared from Cr2O3 Nanoparticles
    Gibot, Pierre
    Comet, Marc
    Eichhorn, Alfred
    Schnell, Fabien
    Muller, Olivier
    Ciszek, Fabrice
    Boehrer, Yannick
    Spitzer, Denis
    PROPELLANTS EXPLOSIVES PYROTECHNICS, 2011, 36 (01) : 80 - 87
  • [24] MAGNETIC STRUCTURE OF CR2O3
    CORLISS, LM
    HASTINGS, JM
    NATHANS, R
    SHIRANE, G
    JOURNAL OF APPLIED PHYSICS, 1965, 36 (3P2) : 1099 - &
  • [25] Temperature dependent induced spin polarization in Cr2O3 overlayers on epitaxial CrO2 films
    Cheng, RH
    Komesu, T
    Jeong, HK
    Yuan, L
    Liou, SH
    Doudin, B
    Dowben, PA
    Losovyj, YB
    PHYSICS LETTERS A, 2002, 302 (04) : 211 - 216
  • [26] Magnetic properties of CrO2 prepared by an ambient pressure TiO2 support assisted synthesis
    Egdell, RG
    Brand, E
    Kellett, D
    JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (11) : 2717 - 2719
  • [27] Magnetic properties of Co nanoparticles in a Cr2O3 antiferromagnetic matrix
    Winkler, E.
    Zysler, R. D.
    Troiani, H. E.
    Fiorani, D.
    PHYSICA B-CONDENSED MATTER, 2006, 384 (1-2) : 268 - 270
  • [28] Size dependence of the magnetic properties of antiferromagnetic Cr2O3 nanoparticles
    Tobia, D.
    Winkler, E.
    Zysler, R. D.
    Granada, M.
    Troiani, H. E.
    PHYSICAL REVIEW B, 2008, 78 (10)
  • [29] Comment on "a large low-field magnetoresistance of CrO2/(CrO2/Cr2O3) powder compact with two coercivities" -: art. no. 126102
    Ju, S
    Cai, TY
    Li, ZY
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (12)
  • [30] A large low-field tunneling magnetoresistance of CrO2/(CrO2/Cr2O3) powder compact with two coercivities -: art. no. 073907
    Wang, JP
    Che, P
    Feng, J
    Lu, MF
    Liu, JF
    Meng, J
    Hong, YJ
    Tang, JK
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (07)