Super Camassa-Holm-type systems associated to the Kuper-Ramond-Schwarz superalgebra

被引:1
|
作者
Ge, Yanyan [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
FROBENIUS-VIRASORO ALGEBRA; GEODESIC-FLOW; DIFFEOMORPHISM GROUP; EULER EQUATIONS; EXTENSIONS; LIE;
D O I
10.1063/1.5110589
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a class of super integrable systems with a local bi-super-Hamiltonian structure, including super Camassa-Holm-type systems, which can be realized as Euler-type systems on the dual of the Kuper-Ramond-Schwarz superalgebra.
引用
收藏
页数:7
相关论文
共 24 条
  • [1] WEAKLY INTEGRABLE CAMASSA-HOLM-TYPE EQUATIONS
    Dong, Peilong
    Wu, Zhiwei
    He, Jingsong
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (3-4):
  • [2] A note on multi-dimensional Camassa-Holm-type systems on the torus
    Kohlmann, Martin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (12)
  • [3] On the integrability of some two-component Camassa-Holm-type systems
    Li, Hongmin
    Li, Xiaoyong
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [4] An integrable four-component Camassa-Holm-type system
    Zhu, Chendi
    Kang, Jing
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
  • [5] Ill-posedness of the Cauchy problem for the μ-Camassa-Holm-type equations
    Yan, Kexin
    Wang, Hao
    Fu, Ying
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (04)
  • [6] On the Dynamics of Zero-Speed Solutions for Camassa-Holm-Type Equations
    Alejo, Miguel A.
    Cortez, Manuel Fernando
    Kwak, Chulkwang
    Munoz, Claudio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (09) : 6543 - 6585
  • [7] On the Luo-Yin results concerning Gevrey regularity and analyticity for Camassa-Holm-type systems
    Zhang, Lei
    Liu, Bin
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2020, 21 : 1741 - 1744
  • [8] Stability of periodic peaked solitary waves for a cubic Camassa-Holm-type equation
    HWANG, G. U. E. N. B. O.
    MOON, B. Y. U. N. G. S. O. O.
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (03)
  • [9] Some Properties of Solutions to the Camassa-Holm-Type Equation with Higher-Order Nonlinearities
    Guo, Zhengguang
    Li, Xiuge
    Yu, Chuang
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (05) : 1901 - 1914
  • [10] A note on the solution map for the periodic multi-dimensional Camassa-Holm-type system
    Fu, Ying
    Wang, Haiquan
    MONATSHEFTE FUR MATHEMATIK, 2022, 197 (03): : 435 - 461