A note on the solution map for the periodic multi-dimensional Camassa-Holm-type system

被引:2
|
作者
Fu, Ying [1 ,2 ]
Wang, Haiquan [3 ]
机构
[1] Northwest Univ, Sch Math, Xian 710127, Peoples R China
[2] Northwest Univ, Ctr Nonlinear Studies, Xian 710127, Peoples R China
[3] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2022年 / 197卷 / 03期
基金
中国国家自然科学基金;
关键词
Non-uniform dependence; Periodic multi-dimensional Camassa-Holm system; Besov spaces; Approximate solutions; SHALLOW-WATER EQUATION; NONUNIFORM DEPENDENCE; WELL-POSEDNESS; GLOBAL EXISTENCE; BREAKING WAVES; CAUCHY-PROBLEM; INITIAL DATA;
D O I
10.1007/s00605-021-01615-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considered in this paper is the initial value problem of periodic multi-dimensional Camassa-Holm-type system. It is shown that the solution map of this problem is not uniformly continuous in Besov spaces B-2,1(1+d/2)(T-d) x B-2,1(d/2)(T-d) with d is an element of Z(+), d >= 1. Based on the local well-posedness results, the method of approximate solutions is utilized.
引用
收藏
页码:435 / 461
页数:27
相关论文
共 50 条
  • [1] A note on the solution map for the periodic multi-dimensional Camassa–Holm-type system
    Ying Fu
    Haiquan Wang
    Monatshefte für Mathematik, 2022, 197 : 435 - 461
  • [2] A note on multi-dimensional Camassa-Holm-type systems on the torus
    Kohlmann, Martin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (12)
  • [3] A note on the solution map for the periodic Camassa-Holm equation
    Tang, Hao
    Zhao, Yongye
    Liu, Zhengrong
    APPLICABLE ANALYSIS, 2014, 93 (08) : 1745 - 1760
  • [4] PERTURBATIONAL SELF-SIMILAR SOLUTIONS FOR MULTI -DIMENSIONAL CAMASSA-HOLM-TYPE EQUATIONS
    An, Hongli
    Kwong, Mankam
    Yuen, Manwai
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [5] An integrable four-component Camassa-Holm-type system
    Zhu, Chendi
    Kang, Jing
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
  • [6] Stability of periodic peaked solitary waves for a cubic Camassa-Holm-type equation
    HWANG, G. U. E. N. B. O.
    MOON, B. Y. U. N. G. S. O. O.
    JOURNAL OF EVOLUTION EQUATIONS, 2022, 22 (03)
  • [7] WEAKLY INTEGRABLE CAMASSA-HOLM-TYPE EQUATIONS
    Dong, Peilong
    Wu, Zhiwei
    He, Jingsong
    ROMANIAN JOURNAL OF PHYSICS, 2017, 62 (3-4):
  • [8] Ill-posedness of the Cauchy problem for the μ-Camassa-Holm-type equations
    Yan, Kexin
    Wang, Hao
    Fu, Ying
    JOURNAL OF EVOLUTION EQUATIONS, 2023, 23 (04)
  • [9] On the integrability of some two-component Camassa-Holm-type systems
    Li, Hongmin
    Li, Xiaoyong
    PRAMANA-JOURNAL OF PHYSICS, 2019, 92 (04):
  • [10] On the Dynamics of Zero-Speed Solutions for Camassa-Holm-Type Equations
    Alejo, Miguel A.
    Cortez, Manuel Fernando
    Kwak, Chulkwang
    Munoz, Claudio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (09) : 6543 - 6585