Exploring non-linear diffusion: The diffusion echo

被引:0
|
作者
Dam, E [1 ]
Nielsen, M [1 ]
机构
[1] IT Univ, DK-2400 Copenhagen NV, Denmark
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Gaussian serves as Green's function for the linear diffusion equation and as a source for intuitive understanding of the linear diffusion process. In general, non-linear diffusion equations have no known closed form solutions and thereby no equally simple description. This article introduces a simple, intuitive description of these processes in terms of the Diffusion Echo. The Diffusion Echo offers intuitive visualisations for non-linear diffusion processes. In addition, the Diffusion Echo has potential for offering simple formulations for grouping problems. Furthermore, the Diffusion Echo can be considered a deep structure summary and thereby offers an alternative to multi-scale linking and flooding techniques.
引用
收藏
页码:264 / 272
页数:9
相关论文
共 50 条
  • [31] SOME SOLUTIONS OF A NON-LINEAR DIFFUSION PROBLEM
    SUZUKI, M
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 1979, 12 (05) : 400 - 403
  • [32] NON-LINEAR CLASSICAL DIFFUSION IN A CONTAINED PLASMA
    LOW, BC
    PHYSICS OF FLUIDS, 1982, 25 (02) : 402 - 407
  • [33] Adaptive Non-linear Diffusion in Wavelet Domain
    Mandava, Ajay K.
    Regentova, Emma E.
    IMAGE ANALYSIS AND RECOGNITION: 8TH INTERNATIONAL CONFERENCE, ICIAR 2011, PT I, 2011, 6753 : 58 - 68
  • [34] Laplacian based non-linear diffusion filtering
    Nishiguchi, Haruhiko
    Imiya, Atsushi
    Sakai, Tomoya
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 838 - +
  • [35] NON-LINEAR DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    DOKLADY AKADEMII NAUK SSSR, 1980, 254 (06): : 1310 - 1314
  • [36] POLLUTION OF GROUNDWATER THROUGH NON-LINEAR DIFFUSION
    BASAK, P
    MURTY, VVN
    JOURNAL OF HYDROLOGY, 1978, 38 (3-4) : 243 - 247
  • [37] PREFACE: DIFFUSION ON FRACTALS AND NON-LINEAR DYNAMICS
    Falk, Kurt
    Kesseboehmer, Marc
    Oertel-Jaeger, Tobias Henrik
    Rademacher, Jens D. M.
    Samuel, Tony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (02): : I - IV
  • [38] A POPULATION-MODEL WITH NON-LINEAR DIFFUSION
    MACCAMY, RC
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (01) : 52 - 72
  • [39] SINGULAR NON-LINEAR DIFFUSION-EQUATIONS
    YOUNG, DP
    HOUSTON JOURNAL OF MATHEMATICS, 1983, 9 (01): : 131 - 149
  • [40] Non-Linear Binding and the Diffusion–Migration Test
    Olivier Coussy
    Robert Eymard
    Transport in Porous Media, 2003, 53 : 51 - 74