Classification of q-Ary Perfect Quantum Codes

被引:4
|
作者
Li, Zhuo [1 ]
Xing, Lijuan [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shannxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Perfect quantum codes; quantum error-correcting codes; quantum information; ERROR-CORRECTING CODES; STABILIZER CODES;
D O I
10.1109/TIT.2012.2217475
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We solve the problem of the classification of q-ary perfect quantum codes. We prove that the only nontrivial q-ary perfect quantum codes are those with the parameters (((q(21)-1)/(q(2)-1), q(n-21),3))(q). There exist no other nontrivial q-ary perfect quantum codes.
引用
收藏
页码:631 / 634
页数:4
相关论文
共 50 条
  • [41] Q-ary turbo codes with QAM modulations
    Chang, YW
    Wei, VKW
    ICUPC '96 - 1996 5TH IEEE INTERNATIONAL CONFERENCE ON UNIVERSAL PERSONAL COMMUNICATIONS RECORD, VOLS 1 AND 2, 1996, : 814 - 817
  • [42] A note on bounds for q-ary covering codes
    Bhandari, MC
    Durairajan, C
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) : 1640 - 1642
  • [43] A New Class of Nonlinear Q-ary Codes
    Stepanov, S.
    PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (03) : 204 - 216
  • [44] Prefixless q-ary Balanced Codes with ECC
    Swart, Theo G.
    Immink, Kees A. S.
    2013 IEEE INFORMATION THEORY WORKSHOP (ITW), 2013,
  • [45] A new class of nonlinear Q-ary codes
    S. A. Stepanov
    Problems of Information Transmission, 2006, 42 : 204 - 216
  • [46] Binary and q-ary Tardos codes, revisited
    Skoric, Boris
    Oosterwijk, Jan-Jaap
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 74 (01) : 75 - 111
  • [47] New q-ary quantum MDS codes with distances bigger than q/2
    He, Xianmang
    Xu, Liqing
    Chen, Hao
    QUANTUM INFORMATION PROCESSING, 2016, 15 (07) : 2745 - 2758
  • [48] LOWER BOUNDS FOR q-ARY COVERING CODES
    陈文德
    IIRO S. HONKALA
    ChineseScienceBulletin, 1990, (06) : 521 - 522
  • [49] Optimal Codes for the q-ary Deletion Channel
    Sima, Jin
    Gabrys, Ryan
    Bruck, Jehoshua
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 740 - 745
  • [50] MAXIMAL Q-ARY CODES AND PLOTKIN BOUND
    MACKENZIE, C
    SEBERRY, J
    ARS COMBINATORIA, 1988, 26B : 37 - 50