Food Classification from Images Using Convolutional Neural Networks

被引:0
|
作者
Attokaren, David J. [1 ]
Fernandes, Ian G. [1 ]
Sriram, A. [1 ]
Murthy, Y. V. Srinivasa [1 ]
Koolagudi, Shashidhar G. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept CSE, Mangalore 575025, India
关键词
Convolution filters; Convolution layer; Convolutional neural networks; Food-101; dataset; Food classification; Image recognition; MAX pooling; DIETARY ASSESSMENT; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The process of identifying food items from an image is quite an interesting field with various applications. Since food monitoring plays a leading role in health-related problems, it is becoming more essential in our day-to-day lives. In this paper, an approach has been presented to classify images of food using convolutional neural networks. Unlike the traditional artificial neural networks, convolutional neural networks have the capability of estimating the score function directly from image pixels. A 2D convolution layer has been utilised which creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs. There are multiple such layers, and the outputs are concatenated at parts to form the final tensor of outputs. We also use the Max-Pooling function for the data, and the features extracted from this function are used to train the network. An accuracy of 86.97% for the classes of the FOOD-101 dataset is recognised using the proposed implementation.
引用
收藏
页码:2801 / 2806
页数:6
相关论文
共 50 条
  • [41] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086
  • [42] Convolutional Neural Networks for Noise Classification and Denoising of Images
    Sil, Dibakar
    Dutta, Arindam
    Chandra, Aniruddha
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 447 - 451
  • [43] ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Zhou, Yiren
    Song, Sibo
    Cheung, Ngai-Man
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1213 - 1217
  • [44] Modality classification for medical images using multiple deep convolutional neural networks
    School of Computer Science and Technology, Dalian University of Technology, Dalian, China
    不详
    不详
    不详
    J. Comput. Inf. Syst., 15 (5403-5413):
  • [45] Classification of X-Ray Images of the Chest Using Convolutional Neural Networks
    Mochurad, Lesia
    Dereviannyi, Andrii
    Antoniv, Uliana
    IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 269 - 282
  • [46] Ground Target Classification in Noisy SAR Images Using Convolutional Neural Networks
    Wang, Jun
    Zheng, Tong
    Lei, Peng
    Bai, Xiao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (11) : 4180 - 4192
  • [47] Images Based Classification for Warm Cloud Rainmaking using Convolutional Neural Networks
    Arthayakun, Sarawut
    Kamonsantiroj, Suwatchai
    Pipanmaekaporn, Luepol
    2018 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE), 2018, : 413 - 417
  • [48] Classification of gastric neoplasms using deep convolutional neural networks in endoscopic images
    Bang, Chang Seok
    Cho, Bum-Joo
    Yang, Young Joo
    Baik, Gwang Ho
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2018, 33 : 292 - 292
  • [49] Classification of Whole Mammogram and Tomosynthesis Images Using Deep Convolutional Neural Networks
    Zhang, Xiaofei
    Zhang, Yi
    Han, Erik Y.
    Jacobs, Nathan
    Han, Qiong
    Wang, Xiaoqin
    Liu, Jinze
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2018, 17 (03) : 237 - 242
  • [50] Pixel-Based Classification of Hyperspectral Images Using Convolutional Neural Networks
    Hussain, Syed Aamer
    Tahir, Ali
    Khan, Junaid Aziz
    Salman, Ahmad
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (1-2): : 33 - 45