Wavefront prediction using artificial neural networks for open-loop adaptive optics

被引:31
|
作者
Liu, Xuewen [1 ]
Morris, Tim [1 ]
Saunter, Chris [1 ]
de Cos Juez, Francisco Javier [2 ]
Gonzalez-Gutierrez, Carlos [2 ]
Bardou, Lisa [1 ]
机构
[1] Univ Durham, Ctr Adv Instrumentat, Dept Phys, South Rd, Durham DH1 3LE, England
[2] Univ Oviedo, Univ Inst Space Sci & Technol Asturias, E-33004 Oviedo, Spain
基金
欧盟地平线“2020”;
关键词
atmospheric effects; instrumentation: adaptive optics; methods: numerical; CONTROL LAW; LQG CONTROL; VALIDATION;
D O I
10.1093/mnras/staa1558
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Latency in the control loop of adaptive optics (AO) systems can severely limit performance. Under the frozen flow hypothesis linear predictive control techniques can overcome this; however, identification and tracking of relevant turbulent parameters (such as wind speeds) is required for such parametric techniques. This can complicate practical implementations and introduce stability issues when encountering variable conditions. Here, we present a non-linear wavefront predictor using a long short-term memory (LSTM) artificial neural network (ANN) that assumes no prior knowledge of the atmosphere and thus requires no user input. The ANN is designed to predict the open-loop wavefront slope measurements of a Shack-Hartmann wavefront sensor (SI I-WFS) one frame in advance to compensate for a single-frame delay in a simulated 7 x 7 single-conjugate adaptive optics system operating at 150 Hz. We describe how the training regime of the LSTM ANN affects prediction performance and show how the performance of the predictor varies under various guide star magnitudes. We show that the prediction remains stable when both wind speed and direction are varying. We then extend our approach to a more realistic two-frame latency system. AO system performance when using the LSTM predictor is enhanced for all simulated conditions with prediction errors within 19.9-40.0 nm RMS of a latency-free system operating under the same conditions compared to a bandwidth error of 78.3 +/- 4.4 nm RMS.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 50 条
  • [31] Tomographic reconstructor for multi-object adaptive optics using artificial neural networks
    Guzman, Dani
    Mello, Alexandre T.
    Osborn, James
    De Cos, Francisco J.
    Gomez, Marlon
    Butterley, Timothy
    David, Nicole
    Roqueni, Nieves
    Myers, Richard M.
    Guesalaga, Andres
    Salas, Matias
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [32] Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system
    Cao, Zhaoliang
    Mu, Quanquan
    Hu, Lifa
    Liu, Yonggang
    Peng, Zenghui
    Yang, Qingyun
    Meng, Haoran
    Yao, Lishuang
    Xuan, Li
    OPTICS EXPRESS, 2012, 20 (17): : 19331 - 19342
  • [33] High-precision open-loop adaptive optics system based on LC-SLM
    Li, Chao
    Xia, Mingliang
    Mu, Quanquan
    Jiang, Baoguang
    Xuan, Li
    Cao, Zhaoliang
    OPTICS EXPRESS, 2009, 17 (13): : 10774 - 10781
  • [34] Adaptive fast open-loop maneuvers for quadrocopters
    Sergei Lupashin
    Raffaello D’Andrea
    Autonomous Robots, 2012, 33 : 89 - 102
  • [35] Adaptive fast open-loop maneuvers for quadrocopters
    Lupashin, Sergei
    D'Andrea, Raffaello
    AUTONOMOUS ROBOTS, 2012, 33 (1-2) : 89 - 102
  • [36] Highly robust spatiotemporal wavefront prediction with a mixed graph neural network in adaptive optics
    Tang, Ju
    Wu, Ji
    Zhang, Jiawei
    Zhang, Mengmeng
    Ren, Zhenbo
    Di, Jianglei
    Hu, Liusen
    Liu, Guodong
    Zhao, Jianlin
    PHOTONICS RESEARCH, 2023, 11 (11) : 1802 - 1813
  • [37] Hybrid attention graph neural network for dynamic spatiotemporal wavefront prediction in adaptive optics
    Qin, Zhijian
    Jiang, Wenjun
    Tang, Ju
    Dou, Jiazhen
    Zhong, Liyun
    Di, Jianglei
    Qin, Yuwen
    OPTICS AND LASER TECHNOLOGY, 2025, 186
  • [38] Highly robust spatiotemporal wavefront prediction with a mixed graph neural network in adaptive optics
    JU TANG
    JI WU
    JIAWEI ZHANG
    MENGMENG ZHANG
    ZHENBO REN
    JIANGLEI DI
    LIUSEN HU
    GUODONG LIU
    JIANLIN ZHAO
    Photonics Research, 2023, 11 (11) : 1802 - 1813
  • [39] Open-loop training of recurrent neural networks for nonlinear dynamical system identification
    Liu, DR
    IJCNN'01: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2001, : 1215 - 1220
  • [40] Wavefront reconstruction with artificial neural networks
    Guo, Hong
    Korablinova, Nina
    Ren, Qiushi
    Bille, Josef
    OPTICS EXPRESS, 2006, 14 (14): : 6456 - 6462