Fusion Tree Network for RGBT Tracking

被引:4
|
作者
Cheng, Zhiyuan [1 ]
Lu, Andong [1 ]
Zhang, Zhang [4 ,5 ]
Li, Chenglong [2 ,3 ]
Wang, Liang [4 ,5 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Hefei, Peoples R China
[2] Anhui Prov Key Lab Multimodal Cognit Computat, Hefei, Peoples R China
[3] Anhui Univ, Sch Artificial Intelligence, Hefei, Peoples R China
[4] Ctr Res Intelligent Percept & Comp, NLPR, CASIA, Beijing, Peoples R China
[5] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/AVSS56176.2022.9959406
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
RGBT tracking is often affected by complex scenes ( i.e., occlusions, scale changes, noisy background, etc). Existing works usually adopt a single-strategy RGBT tracking fusion scheme to handle modalityfitsion in all scenarios. However, due to the limitation of fusion model capacity, it is difficult to fully integrate the discriminative features between different modalities. 'lb tackle this problem, we propose a Fusion Tree Network (FTNet), which provides a multistrategy fusion model with high capacity to efficiently fuse different modalities. Specifically, we combine three kinds of attention modules ( i.e., channel attention, spatial attention, and location attention) in a tree structure to achieve multi-path hybrid attention in the deeper convolutional stages of the object tracking network Extensive experiments are performed on three RGBT tracking datasets, and the results show that our method achieves superior performance among state-of-the-art RGBT tracking models.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Deep Triply Attention Network for RGBT Tracking
    Rui Yang
    Xiao Wang
    Yabin Zhu
    Jin Tang
    Cognitive Computation, 2023, 15 : 1934 - 1946
  • [22] MCSSAFNet: A multi-scale state-space attention fusion network for RGBT tracking
    Zhao, Chunbo
    Mo, Bo
    Li, Dawei
    Wang, Xinchun
    Zhao, Jie
    Xu, Junwei
    OPTICS COMMUNICATIONS, 2025, 577
  • [23] Exploring fusion strategies for accurate RGBT visual object tracking
    Tang, Zhangyong
    Xu, Tianyang
    Li, Hui
    Wu, Xiao-Jun
    Zhu, XueFeng
    Kittler, Josef
    INFORMATION FUSION, 2023, 99
  • [24] Differential Reinforcement and Global Collaboration Network for RGBT Tracking
    Mei, Jiatian
    Zhou, Dongming
    Cao, Jinde
    Nie, Rencan
    He, Kangjian
    IEEE SENSORS JOURNAL, 2023, 23 (07) : 7301 - 7311
  • [25] Specific and Collaborative Representations Siamese Network for RGBT Tracking
    Liu, Yisong
    Zhou, Dongming
    Cao, Jinde
    Yan, Kaixiang
    Geng, Lizhi
    IEEE SENSORS JOURNAL, 2024, 24 (11) : 18520 - 18534
  • [26] Multimodal bidirectional information enhancement network for RGBT tracking
    Zhao W.
    Liu L.
    Wang K.
    Tu Z.
    Luo B.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (02): : 596 - 605
  • [27] Exploring the potential of Siamese network for RGBT object tracking
    Feng, Liangliang
    Song, Kechen
    Wang, Junyi
    Yan, Yunhui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 95
  • [28] Highly compact adaptive network based on transformer for RGBT tracking
    Chen, Siqing
    Gao, Pan
    Wang, Xun
    Liao, Kuo
    Zhang, Ping
    INFRARED PHYSICS & TECHNOLOGY, 2024, 139
  • [29] Learning modality feature fusion via transformer for RGBT-tracking
    Cai, Yujue
    Sui, Xiubao
    Gu, Guohua
    Chen, Qian
    INFRARED PHYSICS & TECHNOLOGY, 2023, 133
  • [30] RGBT Tracking via Progressive Fusion Transformer With Dynamically Guided Learning
    Zhu, Yabin
    Li, Chenglong
    Wang, Xiao
    Tang, Jin
    Huang, Zhixiang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8722 - 8735