A neural network compression method based on knowledge-distillation and parameter quantization for the bearing fault diagnosis

被引:49
|
作者
Ji, Mengyu [1 ]
Peng, Gaoliang [1 ]
Li, Sijue [1 ]
Cheng, Feng [1 ]
Chen, Zhao [1 ]
Li, Zhixiong [2 ,4 ]
Du, Haiping [3 ]
机构
[1] Harbin Inst Technol, State Key Lab Robot Technol & Syst, Harbin 150001, Peoples R China
[2] Yonsei Univ, Yonsei Frontier Lab, Seoul 03722, South Korea
[3] Univ Wollongong, Fac Engn Informat & Sci, Wollongong, NSW 2522, Australia
[4] Opole Univ Technol, Fac Mech Engn, PL-45758 Opole, Poland
基金
中国国家自然科学基金;
关键词
Bearing fault diagnosis; Neural network compression method; Knowledge-distillation; Parameter quantization; Field programmable gate array (FPGA); MACHINERY;
D O I
10.1016/j.asoc.2022.109331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Condition monitoring and fault diagnosis have been critical for the optimal scheduling of machines, improving the system reliability and the reducing maintenance cost. In recent years, various of methods based on the deep learning method have made the great progress in the field of the mechanical fault diagnosis. However, there is a conflict between the massive parameters of the fault diagnosis networks and the limited computing resource of the embedded platforms. It is difficult to deploy the trained network on the small scale embedded platforms (like field programmable gate array (FPGA)) in the actual industrial situations. This seriously hinders the practical process of the intelligent fault diagnosis method. To address this problem, a new neural network compression method based on knowledge-distillation (K-D) and parameter quantization is proposed in this paper. In the proposed method, a large scale deep neural network with multiple convolutional layers and fully-connected layers is designed and trained as the teacher network. Then a small scale network with just one convolutional layer and one fully-connected layer is designed as the student network. When training the student network, the K-D process is conducted to improve the accuracy of the student network. After the training process, the parameter quantization is conducted to further compress the scale of the student network. Experimental results on the field programmable gate array (FPGA) are presented to demonstrate the effectiveness of the proposed method. The results show that the proposed method can greatly compress the scales of the fault diagnosis networks for over 10 times at the cost of the minimal loss of the accuracy.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Lightweight fault diagnosis method in embedded system based on knowledge distillation
    Gong, Ran
    Wang, Chenlin
    Li, Jinxiao
    Xu, Yi
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (11) : 5649 - 5660
  • [42] An Analysis Method for Interpretability of Convolutional Neural Network in Bearing Fault Diagnosis
    Guo, Liang
    Gu, Xi
    Yu, Yaoxiang
    Duan, Andongzhe
    Gao, Hongli
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 12
  • [43] Lightweight fault diagnosis method in embedded system based on knowledge distillation
    Ran Gong
    Chenlin Wang
    Jinxiao Li
    Yi Xu
    Journal of Mechanical Science and Technology, 2023, 37 : 5649 - 5660
  • [44] A Dynamic Quantization Coding Based Deep Neural Network Compression Method
    Rao C.
    Chen J.-Y.
    Xu R.-Y.
    Liu L.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2019, 45 (10): : 1960 - 1968
  • [45] Uncertainty-based knowledge distillation for Bayesian deep neural network compression
    Hemmatian, Mina
    Shahzadi, Ali
    Mozaffari, Saeed
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2024, 175
  • [46] Uncertainty-based knowledge distillation for Bayesian deep neural network compression
    Hemmatian, Mina
    Shahzadi, Ali
    Mozaffari, Saeed
    International Journal of Approximate Reasoning, 1600, 175
  • [47] Multiple hierarchical compression for deep neural network toward intelligent bearing fault diagnosis
    Sun, Jiedi
    Liu, Zhao
    Wen, Jiangtao
    Fu, Rongrong
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [48] Rolling bearing fault diagnosis method based on parameter optimized VMD
    Li K.
    Niu Y.-Y.
    Su L.
    Gu J.-F.
    Lu L.-X.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2023, 36 (01): : 280 - 287
  • [49] A rolling bearing fault diagnosis method based on a convolutional neural network with frequency attention mechanism
    Zhou, Hui
    Liu, Runda
    Li, Yaxin
    Wang, Jiacheng
    Xie, Suchao
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (04): : 2475 - 2495
  • [50] A fault diagnosis method for rolling bearing based on gram matrix and multiscale convolutional neural network
    Zhang, Xinyan
    Cai, Shaobin
    Cai, Wanchen
    Mo, Yuchang
    Wei, Liansuo
    SCIENTIFIC REPORTS, 2024, 14 (01):