THE INVERSE GALOIS PROBLEM FOR PSL2(Fp)

被引:10
|
作者
Zywina, David [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
REPRESENTATIONS;
D O I
10.1215/00127094-3129271
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the simple group PSL2 (F-p) occurs as the Galois group of an extension of the rationals for all primes p >= 5. We obtain our Galois extensions by studying the Galois action on the second etale cohomology groups of a specific elliptic surface.
引用
收藏
页码:2253 / 2292
页数:40
相关论文
共 50 条
  • [21] PSL2(59) is a subgroup of the Monster
    Holmes, PE
    Wilson, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 : 141 - 152
  • [22] On surjectivity of word maps on PSL2
    Jezernik, Urban
    Sanchez, Jonatan
    JOURNAL OF ALGEBRA, 2021, 587 : 613 - 627
  • [23] Maximal cocliques in PSL2(q)
    Saunders, Jack
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (10) : 3921 - 3931
  • [24] POLYNOMIALS WITH GALOIS-GROUPS PGL2(P) AND PSL2(P) OVER Q(T)
    MALLE, G
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (02) : 511 - 526
  • [25] SUBEXTENSIONS FOR A PERMUTATION PSL2(q)-MODULE
    Zavarnitsine, Andrei, V
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2013, 10 : 551 - 557
  • [26] Complex hyperbolic representations of PSL2( R )
    Stolowicz, Gonzalo Emiliano Ruiz
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3723 - 3764
  • [27] PSL2(Q) AND EXTENSIONS OF Q(X)
    VOLKLEIN, H
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 24 (01) : 145 - 153
  • [28] Counting cusps of subgroups of PSL2(OK)
    Petersen, Kathleen L.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) : 2387 - 2393
  • [29] Neutrino masses, the μ-term, and PSL2(7)
    Chen, Gaoli
    Perez, M. Jay
    Ramond, Pierre
    PHYSICAL REVIEW D, 2015, 92 (07):
  • [30] De non ordinaria recognitione PSL2
    Deloro, Adrien
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2008, 7 (04) : 723 - 734