Short-Term Load Forecasting Using Informative Vector Machine

被引:5
|
作者
Kurata, Eitaro [1 ]
Mori, Hiroyuki [1 ]
机构
[1] Meiji Univ, Dept Elect & Elect Engn, Tokyo 101, Japan
关键词
short-term load forecasting; kernel machine; Gaussian process; Informative Vector Machine; MODEL;
D O I
10.1002/eej.20693
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel method is proposed for short-term load forecasting, which is one of the important tasks in power system operation and planning. The load behavior is so complicated that it is hard to predict the load. The deregulated power market is faced with the new problem of an increase in the degree of uncertainty. Thus, power system operators are concerned with the significant level of load forecasting. Namely, probabilistic load forecasting is required to smooth power system operation and planning. In this paper, an IVM (Informative Vector Machine) based method is proposed for short-term load forecasting. IVM is one of the kernel machine techniques that are derived from an SVM (Support Vector Machine). The Gaussian process (GP) satisfies the requirements that the prediction results are expressed as a distribution rather than as points. However, it is inclined to be overtrained for noise due to the basis function with N-2 elements for N data. To overcome this problem, this paper makes use of IVM that selects necessary data for the model approximation with a posteriori distribution of entropy. That has a useful function to suppress the excess training. The proposed method is tested using real data for short-term load forecasting. (C) 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(2): 23-31, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/eej.20693
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [31] Short-term load forecasting based on self-organizing map and support vector machine
    Bao, ZJ
    Pi, DY
    Sun, YX
    ADVANCES IN NATURAL COMPUTATION, PT 1, PROCEEDINGS, 2005, 3610 : 688 - 691
  • [32] Short-term power load forecasting based on support vector machine and particle swarm optimization
    Qiang, Song
    Pu, Yang
    JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2018, 13 (13) : 1 - 8
  • [33] Short-term load forecasting based on correlation coefficient and weighted support vector regression machine
    Liu, Limei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT INNOVATION, 2015, 28 : 1077 - 1081
  • [34] A short-term load forecasting model based on relevance vector machine with nonnegative matrix factorization
    Huang, Shuaidong
    Wei, Zhinong
    Gao, Zonghe
    Yang, Zhenglin
    Sun, Guoqiang
    Sun, Yonghui
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2012, 36 (11): : 62 - 66
  • [35] Study on urban short-term gas load forecasting based on support vector machine model
    Zhang, Chao
    Liu, Yi
    Zhang, Hui
    Huang, Hong
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2014, 54 (03): : 320 - 325
  • [36] Application of support vector regression to temperature forecasting for short-term load forecasting
    Mori, Hiroyuki
    Kanaoka, Daisuke
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 1085 - 1090
  • [37] SHORT-TERM LOAD FORECASTING
    GROSS, G
    GALIANA, FD
    PROCEEDINGS OF THE IEEE, 1987, 75 (12) : 1558 - 1573
  • [38] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [39] Cross-Substation Short Term Load Forecasting Using Support Vector Machine
    Pahasa, Jonglak
    Theera-Umpon, Nipon
    ECTI-CON 2008: PROCEEDINGS OF THE 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2008, : 953 - +
  • [40] Short-term load forecasting based on support vector regression and load profiling
    Sousa, Joao C.
    Jorge, Humberto M.
    Neves, Luis P.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (03) : 350 - 362