GPU-Accelerated Coupled Ptychographic Tomography

被引:1
|
作者
Achilles, Silvio [1 ]
Ehrig, Simeon [4 ]
Hoffmann, Nico [4 ]
Kahnt, Maik [5 ]
Becher, Johannes [6 ]
Fam, Yakub [6 ]
Sheppard, Thomas [6 ,7 ]
Brueckner, Dennis [2 ]
Schropp, Andreas [1 ,8 ]
Schroer, Christian G. [1 ,3 ,8 ]
机构
[1] Deutsch Elektronen Synchrotron DESY, Ctr Xray & Nano Sci CXNS, Notkestr 85, D-22607 Hamburg, Germany
[2] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[3] Univ Hamburg, Inst Nanostruct & Solid State Phys, Ctr Hybrid Nanostruct, Luruper Chaussee 149, D-22761 Hamburg, Germany
[4] Helmholtz Zentrum Dresden Rossendorf, Bautzner Landstr 400, D-01328 Dresden, Germany
[5] Lund Univ, MAX Lab 4, POB 118, S-22100 Lund, Sweden
[6] Karlsruhe Inst Technol, Inst Chem Technol & Polymer Chem, Engesserstr 20, D-76131 Karlsruhe, Germany
[7] Karlsruhe Inst Technol, Inst Catalysis Res & Technol, Hermann Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[8] Deutsch Elektronen Synchrotron DESY, Helmholtz Imaging Platform, Notkestr 85, D-22607 Hamburg, Germany
来源
关键词
ptychography; tomography; phase retrieval; CUDA; X-RAY TOMOGRAPHY; ALGORITHM;
D O I
10.1117/12.2633102
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Scanning coherent X-ray microscopy (ptychography) has gained considerable interest during the last decade since the performance of this indirect imaging technique does not necessarily rely on the quality of the X-ray optics and, in principle, can achieve highest spatial resolution in X-ray imaging. The method can be easily extended to 3D by adding standard tomographic reconstruction schemes. However, the tomographic reconstruction is often applied in a subsequent step using a sequence of aligned ptychographic 2D projections. In this contribution, we outline current developments of a GPU-accelerated framework for direct 3D ptychography, coupling 2D ptychography and tomography. The program utilizes a custom GPU-accelerated framework for ptychography that offers three distinct ptychographic reconstruction algorithms. The tomographic reconstruction runs simultaneously and uses numerical routines of the ASTRA Toolbox. This parallel-computing approach results in a high performance increase considerably reducing the reconstruction time of 3D ptychographic datasets.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A GPU-accelerated image reduction pipeline
    Niwano, Masafumi
    Murata, Katsuhiro L.
    Adachi, Ryo
    Wang, Sili
    Tachibana, Yutaro
    Yatsu, Yoichi
    Kawai, Nobuyuki
    Shimokawabe, Takashi
    Itoh, Ryosuke
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2021, 73 (01) : 14 - 24
  • [32] A GPU-accelerated viewer for HEALPix maps
    Frolov, A., V
    ASTRONOMY AND COMPUTING, 2023, 45
  • [33] Porting WarpX to GPU-accelerated platforms
    Myers, A.
    Almgren, A.
    Amorim, L. D.
    Bell, J.
    Fedeli, L.
    Ge, L.
    Gott, K.
    Grote, D. P.
    Hogan, M.
    Huebl, A.
    Jambunathan, R.
    Lehe, R.
    Ng, C.
    Rowan, M.
    Shapoval, O.
    Thevenet, M.
    Vay, J-L
    Vincenti, H.
    Yang, E.
    Zaim, N.
    Zhang, W.
    Zhao, Y.
    Zoni, E.
    PARALLEL COMPUTING, 2021, 108
  • [34] Practical considerations for GPU-accelerated CT
    Mueller, Klaus
    Xu, Fang
    2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 1184 - +
  • [35] GPU-accelerated transportation simplex algorithm
    Mahajan, Mohit
    Nagi, Rakesh
    Journal of Parallel and Distributed Computing, 2024, 184
  • [36] GPU-accelerated transportation simplex algorithm
    Mahajan, Mohit
    Nagi, Rakesh
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 184
  • [37] GAMER: GPU-Accelerated Maze Routing
    Lin, Shiju
    Liu, Jinwei
    Young, Evangeline F. Y.
    Wong, Martin D. F.
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2023, 42 (02) : 583 - 593
  • [38] GPU-accelerated adjoint algorithmic differentiation
    Gremse, Felix
    Hoefter, Andreas
    Razik, Lukas
    Kiessling, Fabian
    Naumann, Uwe
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 200 : 300 - 311
  • [39] GPU-accelerated DEM implementation with CUDA
    Qi, Ji
    Li, Kuan-Ching
    Jiang, Hai
    Zhou, Qingguo
    Yang, Lei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2015, 11 (03) : 330 - 337
  • [40] Benchmarking GPU-Accelerated Edge Devices
    Jo, Jongmin
    Jeong, Sucheol
    Kang, Pilsung
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 117 - 120