Phase Progression of γ-Al2O3 Nanoparticles Synthesized in a Solvent-Deficient Environment

被引:48
|
作者
Smith, Stacey J. [1 ,2 ]
Amin, Samrat [3 ]
Woodfield, Brian F. [2 ]
Boerio-Goates, Juliana [2 ]
Campbell, Branton J. [1 ]
机构
[1] Brigham Young Univ, Dept Phys & Astron, Provo, UT 84602 USA
[2] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
[3] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
基金
美国国家科学基金会;
关键词
PENTACOORDINATED AL3+ IONS; AL-27 MAS NMR; CRYSTAL-STRUCTURE; THERMAL-DECOMPOSITION; ALUMINA NANOPARTICLES; STRUCTURAL-ANALYSIS; TRANSITION; TRANSFORMATION; POWDER; GAMMA;
D O I
10.1021/ic302593f
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Our simple and uniquely cost-effective solvent-deficient synthetic method produces 3-5 nm Al2O3 nanoparticles which show promise as improved industrial catalyst supports. While catalytic applications are sensitive to the details of the atomic structure, a diffraction analysis of alumina nanoparticles is challenging because of extreme size/rnicrostrain-related peak broadening and the similarity of the diffraction patterns of various transitional Al2O3 phases. Here, we employ a combination of X-ray pair-distribution function (PDF) and Rietveld methods, together with solid-state NMR and thermogravimetry/differential thermal analysis-mass spectrometry (TG/DTA-MS), to characterize the alumina phase-progression in our nanoparticles as a function of calcination temperature between 300 and 1200 degrees C. In the solvent-deficient synthetic environment, a boehmite precursor phase forms which transitions to gamma-Al2O3 at an extraordinarily low temperature (below 300 degrees C), but this gamma-Al2O3 is initially riddled with boehmite-like stacking-fault defects that steadily disappear during calcination in the range from 300 to 950 degrees C. The healing of these defects accounts for many of the most interesting and widely reported properties of the gamma-phase.
引用
收藏
页码:4411 / 4423
页数:13
相关论文
共 50 条
  • [21] Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane
    Wang, Zhen
    Wei, Yong-Ming
    Xu, Zhen-Liang
    Cao, Yue
    Dong, Zhe-Qin
    Shi, Xian-Lin
    JOURNAL OF MEMBRANE SCIENCE, 2016, 503 : 69 - 80
  • [22] Thermal analysis of phase transformation kinetics in α-Al2O3 seeded boehmite and γ-Al2O3
    Nordahl, CS
    Messing, GL
    THERMOCHIMICA ACTA, 1998, 318 (1-2) : 187 - 199
  • [23] Properties of Co/Al2O3/Co tunnel junction with Co nanoparticles embedded in Al2O3
    Lee, SF
    Holody, P
    Fettar, F
    Vaurès, A
    Maurice, JL
    Barnas, J
    Petroff, F
    Fert, A
    Liou, Y
    Yao, YD
    PHYSICS AND CHEMISTRY OF NANOSTRUCTURED MATERIALS, 2000, : 192 - 195
  • [24] Plasma sprayed α-Al2O3 main phase coating using γ-Al2O3 powders
    Niu, Bolong
    Qiang, Li
    Zhang, Junyan
    Zhang, Fan
    Hu, Yong
    Chen, Wei
    Liang, Aimin
    SURFACE ENGINEERING, 2019, 35 (09) : 801 - 808
  • [25] Optimization of the dopant concentration in synthesized Al2O3 phosphor
    Bharthasaradhi, R.
    Nehru, L. C.
    Chopra, V.
    Dhoble, S. J.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (13) : 11229 - 11235
  • [26] Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts
    Dmitry E. Doronkin
    Aleksandra B. Kuriganova
    Igor N. Leontyev
    Sina Baier
    Henning Lichtenberg
    Nina V. Smirnova
    Jan-Dierk Grunwaldt
    Catalysis Letters, 2016, 146 : 452 - 463
  • [27] Optimization of the dopant concentration in synthesized Al2O3 phosphor
    R. Bharthasaradhi
    L. C. Nehru
    V. Chopra
    S. J. Dhoble
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 11229 - 11235
  • [28] Electrochemically Synthesized Pt/Al2O3 Oxidation Catalysts
    Doronkin, Dmitry E.
    Kuriganova, Aleksandra B.
    Leontyev, Igor N.
    Baier, Sina
    Lichtenberg, Henning
    Smirnova, Nina V.
    Grunwaldt, Jan-Dierk
    CATALYSIS LETTERS, 2016, 146 (02) : 452 - 463
  • [29] Polymorphic phase transformations in Al2O3
    Gemming, T
    Clarke, DR
    Rühle, M
    JAPAN INSTITUTE OF METALS, PROCEEDINGS, VOL 12, (JIMIC-3), PTS 1 AND 2: SOLID - SOLID PHASE TRANSFORMATIONS, 1999, : 1357 - 1364
  • [30] The mechanism of θ- to α-Al2O3 phase transformation
    Huang, Yuanchao
    Peng, Xiao
    Chen, Xing-Qiu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863