Numerical approaches to developing accurate and efficient approximations to combined likelihoods of population correlation matrices in meta-analysis under normality assumptions for the data are studied. The likelihood is expressed as a multiple integral over the unit cube in (p-1)-dimensional space, where p is the row and column dimensionality of the correlation matrix. Three types of computation are proposed as ways to calculate the likelihood for any population correlation matrix P. As an application, inference is explored concerning intercorrelations among math, spatial and verbal scores in a SAT exam. Comparisons are made with conventional methods.
机构:
Mt Holyoke Coll, Dept Math & Stat, 50 Coll St, S Hadley, MA 01075 USAUniv Massachusetts, Dept Biostat & Epidemiol, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
Ray, Evan
Brecha, Regina L.
论文数: 0引用数: 0
h-index: 0
机构:
Mt Holyoke Coll, Dept Math & Stat, 50 Coll St, S Hadley, MA 01075 USAUniv Massachusetts, Dept Biostat & Epidemiol, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
Brecha, Regina L.
Reilly, Muredach P.
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Med, Coll Phys & Surg, New York, NY USAUniv Massachusetts, Dept Biostat & Epidemiol, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
Reilly, Muredach P.
Foulkes, Andrea S.
论文数: 0引用数: 0
h-index: 0
机构:
Mt Holyoke Coll, Dept Math & Stat, 50 Coll St, S Hadley, MA 01075 USAUniv Massachusetts, Dept Biostat & Epidemiol, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
机构:
Univ Santiago de Compostela, Sustainable Forest Management Unit, Santiago De Compostela, SpainUniv Montana, Dept Forest Management, Missoula, MT 59812 USA