Finding exact solutions of nonlinear PDEs using the natural decomposition method

被引:38
|
作者
Rawashdeh, Mahmoud [1 ]
Maitama, Shehu [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
关键词
natural transform; Sumudu transform; Laplace transform; Adomian decomposition method; DIFFERENTIAL-EQUATIONS;
D O I
10.1002/mma.3984
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we implement the natural decomposition method (NDM) to solve nonlinear partial differential equations. We apply the NDM to obtain exact solutions for three applications of nonlinear partial differential equations. The new method is a combination of the natural transform method and the Adomian decomposition method. We prove some of the properties that are related to the natural transform method. The results are compared with existing solutions obtained by other methods, and one can conclude that the NDM is easy to use and efficient. Copyright (C) 2016 John Wiley & Sons, Ltd.
引用
收藏
页码:223 / 236
页数:14
相关论文
共 50 条
  • [31] THE HOMOGENEOUS BALANCE METHOD AND ITS APPLICATIONS FOR FINDING THE EXACT SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS
    Zayedi, Elsayed M. E.
    Alurrfi, Khaled A. E.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 307 - 318
  • [32] SOLITONS AND OTHER SOLUTIONS TO NONLINEAR PDEs USING (G '/G)-EXPANSION METHOD
    Zayed, Elsayed M. E.
    Ibrahim, S. A. Hoda
    Elshater, Mona E. M.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 749 - 768
  • [33] 'Travelling wave solutions of nonlinear systems of PDEs by using the functional variable method
    Aminikhah, H.
    Sheikhani, A. Refahi
    Rezazadeh, H.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 213 - 229
  • [34] Nonlinear Pantograph-Type Diffusion PDEs: Exact Solutions and the Principle of Analogy
    Polyanin, Andrei D.
    Sorokin, Vsevolod G.
    MATHEMATICS, 2021, 9 (05) : 1 - 23
  • [35] Existence theories and exact solutions of nonlinear PDEs dominated by singularities and time noise
    Ahmed, Muhammad Ozair
    Naeem, Rishi
    Tarar, Muhammad Akhtar
    Iqbal, Muhammad Sajid
    Inc, Mustafa
    Afzal, Farkhanda
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2023, 28 (02): : 194 - 208
  • [36] Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDEs
    Baldwin, D
    Göktas, Ü
    Hereman, W
    Hong, L
    Martino, RS
    Miller, JC
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (06) : 669 - 705
  • [37] The (G′/G, 1/G)-Expansion Method and Its Applications to Find the Exact Solutions of Nonlinear PDEs for Nanobiosciences
    Zayed, E. M. E.
    Alurrfi, K. A. E.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [38] The extended auxiliary equation mapping method to determine novel exact solitary wave solutions of the nonlinear fractional PDEs
    Manafian, Jalil
    Ilhan, Onur Alp
    Avazpour, Laleh
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2021, 22 (01) : 69 - 82
  • [39] Adomian decomposition method to find the approximate solutions for the fractional PDEs
    Gepreel, Khaled A.
    WSEAS Transactions on Mathematics, 2012, 11 (07) : 652 - 659
  • [40] Exact solutions of the Laplace fractional boundary value problems via natural decomposition method
    Hajira
    Khan, Hassan
    Chu, Yu-Ming
    Shah, Rasool
    Baleanu, Dumitru
    Arif, Muhammad
    OPEN PHYSICS, 2020, 18 (01): : 1178 - 1187