Fractional viscoelastic models: master curve construction, interconversion, and numerical approximation

被引:35
|
作者
Katicha, Samer Wehbe [1 ]
Flintsch, G. W. [1 ,2 ]
机构
[1] Virginia Tech Transportat Inst, Ctr Sustainable Transportat Infrastruct, Blacksburg, VA USA
[2] Virginia Tech, Dept Civil & Environm Engn, Blacksburg, VA USA
关键词
Fractional calculus; Time-temperature superposition; Interconversion; Numerical integration; Relaxation time spectrum; Retardation time spectrum; Complex modulus; DIFFERENTIAL-EQUATIONS; REGULARIZATION METHOD; TIME SPECTRA; RELAXATION; CALCULUS; REPRESENTATION; OPERATORS; CREEP;
D O I
10.1007/s00397-012-0625-y
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We use fractional viscoelastic models that result from the application of fractional calculus to the linear viscoelastic theory to characterize thermorheologically simple linear viscoelastic materials. Model parameters are obtained through an optimization procedure that simultaneously determines the time-temperature shift factors. We present analytical interconversion based on the fractional viscoelastic model between the main viscoelastic functions (relaxation modulus, creep compliance, storage modulus, and loss modulus) and the analytical forms of the relaxation and retardation spectra. We show that the fractional viscoelastic model can be approximated by a Prony series to any desired level of accuracy. This property allows the efficient determination of the fractional viscoelastic model response to any loading history using the well-known recursive relationships of Prony series models.
引用
收藏
页码:675 / 689
页数:15
相关论文
共 50 条
  • [41] Dynamic modulus master curve construction of asphalt mixtures: Error analysis in different models and field scenarios
    Vestena, Pablo Menezes
    Schuster, Silvio Lisboa
    Almeida, Pedro Orlando Borges de
    Faccin, Cléber
    Specht, Luciano Pivoto
    Pereira, Deividi da Silva
    Construction and Building Materials, 2021, 301
  • [42] Dynamic modulus master curve construction of asphalt mixtures: Error analysis in different models and field scenarios
    Vestena, Pablo Menezes
    Schuster, Silvio Lisboa
    Borges de Almeida Jr, Pedro Orlando
    Faccin, Cleber
    Specht, Luciano Pivoto
    Pereira, Deividi da Silva
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 301
  • [43] Optimal parametrization in numerical construction of curve
    Kuznetsov, E. B.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2007, 344 (05): : 658 - 671
  • [44] Numerical approximation of curve evolutions in Riemannian manifolds
    Barrett, John W.
    Garcke, Harald
    Nurnberg, Robert
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (03) : 1601 - 1651
  • [45] A NEW ALGORITHM FOR THE NUMERICAL APPROXIMATION OF AN INVARIANT CURVE
    VANVELDHUIZEN, M
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06): : 951 - 962
  • [46] Generalized viscoelastic models: Their fractional equations with solutions
    Schiessel, H
    Metzler, R
    Blumen, A
    Nonnenmacher, TF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (23): : 6567 - 6584
  • [47] Application of Fractional Viscoelastic Models to Amorphous Polymers
    Inoue T.
    Urakawa O.
    Zairyo/Journal of the Society of Materials Science, Japan, 2023, 72 (01) : 6 - 10
  • [49] Construction of Solutions to Control Problems for Fractional-Order Linear Systems Based on Approximation Models
    Gomoyunov, M. I.
    Lukoyanov, N. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (SUPPL 1) : S73 - S82
  • [50] Construction of solutions to control problems for fractional-order linear systems based on approximation models
    Gomoyunov, M., I
    Lukoyanov, N. Yu
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2020, 26 (01): : 39 - 50