Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence

被引:3
|
作者
Lee, Chun-Ho [1 ]
Liu, Wei-Ting [2 ]
Lou, Yu-Sheng [3 ]
Lin, Chin-Sheng [2 ]
Fang, Wen-Hui [4 ]
Lee, Chia-Cheng [5 ,6 ]
Ho, Ching-Liang [7 ]
Wang, Chih-Hung [8 ,9 ]
Lin, Chin [1 ,3 ,10 ]
机构
[1] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[2] Triserv Gen Hosp, Natl Def Med Ctr, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[3] Natl Def Med Ctr, Grad Inst Life Sci, Taipei, Taiwan
[4] Triserv Gen Hosp, Natl Def Med Ctr, Dept Family & Community Med, Dept Internal Med, Taipei, Taiwan
[5] Triserv Gen Hosp, Natl Def Med Ctr, Med Informat Off, Taipei, Taiwan
[6] Triserv Gen Hosp, Natl Def Med Ctr, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[7] Triserv Gen Hosp, Natl Def Med Ctr, Div Hematol & Oncol, Taipei, Taiwan
[8] Triserv Gen Hosp, Natl Def Med Ctr, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[9] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[10] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei 114, Taiwan
来源
DIGITAL HEALTH | 2022年 / 8卷
关键词
Artificial intelligence; electrocardiogram; deep learning; ejection fraction; continuous numerical prediction; degree of confidence; HEART-FAILURE; SYSTOLIC DYSFUNCTION; CRITERIA; OUTCOMES;
D O I
10.1177/20552076221143249
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BackgroundArtificial intelligence-enabled electrocardiogram has become a substitute tool for echocardiography in left ventricular ejection fraction estimation. However, the direct use of artificial intelligence-enabled electrocardiogram may be not trustable due to the uncertainty of the prediction. ObjectiveThe study aimed to establish an artificial intelligence-enabled electrocardiogram with a degree of confidence to identify left ventricular dysfunction. MethodsThe study collected 76,081 and 11,771 electrocardiograms from an academic medical center and a community hospital to establish and validate the deep learning model, respectively. The proposed deep learning model provided the point estimation of the actual ejection fraction and its standard deviation derived from the maximum probability density function of a normal distribution. The primary analysis focused on the accuracy of identifying patients with left ventricular dysfunction (ejection fraction <= 40%). Since the standard deviation was an uncertainty indicator in a normal distribution, we used it as a degree of confidence in the artificial intelligence-enabled electrocardiogram. We further explored the clinical application of estimated standard deviation and followed up on the new-onset left ventricular dysfunction in patients with initially normal ejection fraction. ResultsThe area under receiver operating characteristic curves (AUC) of detecting left ventricular dysfunction were 0.9549 and 0.9365 in internal and external validation sets. After excluding the cases with a lower degree of confidence, the artificial intelligence-enabled electrocardiogram performed better in the remaining cases in internal (AUC = 0.9759) and external (AUC = 0.9653) validation sets. For the application of future left ventricular dysfunction risk stratification in patients with initially normal ejection fraction, a 4.57-fold risk of future left ventricular dysfunction when the artificial intelligence-enabled electrocardiogram is positive in the internal validation set. The hazard ratio was increased to 8.67 after excluding the cases with a lower degree of confidence. This trend was also validated in the external validation set. ConclusionThe deep learning model with a degree of confidence can provide advanced improvements in identifying left ventricular dysfunction and serve as a decision support and management-guided screening tool for prognosis.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Retraining an Artificial Intelligence Algorithm to Calculate Left Ventricular Ejection Fraction in Pediatrics
    Zuercher, Mael
    Ufkes, Steven
    Erdman, Lauren
    Slorach, Cameron
    Mertens, Luc
    Taylor, Katherine
    JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2022, 36 (09) : 3610 - 3616
  • [22] Left ventricular ejection fraction human vs artificial intelligence: quo vadis?
    Botan, R.
    Winkler, A.
    Dindane, Z.
    Nowack, T.
    Heitmann, C.
    Mierke, J.
    Linke, A.
    Sveric, K.
    EUROPEAN HEART JOURNAL, 2022, 43 : 111 - 111
  • [23] Artificial intelligence-enabled electrocardiographic screening for left ventricular systolic dysfunction and mortality risk prediction
    Huang, Yu-Chang
    Hsu, Yu-Chun
    Liu, Zhi-Yong
    Lin, Ching-Heng
    Tsai, Richard
    Chen, Jung-Sheng
    Chang, Po-Cheng
    Liu, Hao-Tien
    Lee, Wen-Chen
    Wo, Hung-Ta
    Chou, Chung-Chuan
    Wang, Chun-Chieh
    Wen, Ming-Shien
    Kuo, Chang-Fu
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2023, 10
  • [24] Detection of Right and Left Ventricular Dysfunction in Pediatric Patients Using Artificial Intelligence-Enabled ECGs
    Anjewierden, Scott
    O'Sullivan, Donnchadh
    Mangold, Kathryn E.
    Greason, Grace
    Attia, Itzhak Zachi
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Asirvatham, Samuel J.
    Anderson, Jason
    Eidem, Benjamin W.
    Johnson, Jonathan N.
    Prakash, Shisheer Havangi
    Niaz, Talha
    Madhavan, Malini
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2024, 13 (21):
  • [25] An artificial intelligence-enabled Holter algorithm to identify patients with ventricular tachycardia by analysing their electrocardiogram during sinus rhythm
    Gendelman, Sheina
    Zvuloni, Eran
    Oster, Julien
    Suleiman, Mahmoud
    Derman, Raphael
    Behar, Joachim A.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (04): : 409 - 415
  • [26] Real-World Performance of the Artificial Intelligence-Enabled Electrocardiogram to Detect Increased Left Ventricular Filling Pressure to Predict Incidence of Heart Failure
    Bhyravajosyula, Sri Charan
    Medina-Inojosa, Jose
    Medina-Inojosa, Betsy
    Lee, Eunjung
    Mangold, Kathryn
    Friedman, Paul
    Attia, Zachi M.
    Oh, Jae
    Lopez-Jimenez, Francisco
    CIRCULATION, 2024, 150
  • [27] Correlation between artificial intelligence-enabled electrocardiogram and echocardiographic features in aortic stenosis
    Ito, Saki
    Cohen-Shelly, Michal
    Attia, Zachi, I
    Lee, Eunjung
    Friedman, Paul A.
    Nkomo, Vuyisile T.
    Michelena, Hector, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Oh, Jae K.
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (03): : 196 - 206
  • [28] Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
    Jin, Yeongbong
    Ko, Bonggyun
    Chang, Woojin
    Choi, Kang-Ho
    Lee, Ki Hong
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2025,
  • [29] Risk stratification of coronary artery disease using the artificial intelligence-enabled electrocardiogram
    Awasthi, S.
    Sachadeva, N.
    Abbou, R.
    Gupta, Y.
    Anto, A.
    Asfahan, S.
    Hegstrom, L.
    Alger, H.
    Medina-Inojosa, J.
    Mccully, R.
    Lerman, A.
    Friedman, P.
    Attia, Z.
    Soundararajan, V.
    Lopez-Jiminez, F.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [30] Detection of Systolic Dysfunction in Pediatric Patients Using an Artificial Intelligence-Enabled Electrocardiogram
    Anjewierden, Scott
    O'Sullivan, Donnchadh
    Greason, Grace
    Attia, Zachi
    Lopez-Jimenez, Francisco
    Friedman, Paul
    Noseworthy, Peter A.
    Anderson, Jason
    Kashou, Anthony H.
    CIRCULATION, 2023, 148