Technical Note: Corrosion Fatigue Crack Growth of Forged Type 316NG Austenitic Stainless Steel in 325°C Water

被引:6
|
作者
Xiao, J. [1 ]
Chen, L. Y. [1 ]
Zhou, J. [1 ]
Qiu, S. Y. [1 ]
Chen, Y. [1 ]
机构
[1] Nucl Power Inst China, Sci & Technol Reactor Fuel & Mat Lab, Chengdu 610041, Sichuan, Peoples R China
关键词
fatigue crack growth; pressurized water reactor; primary coolant pipe; Type 316NG austenitic stainless steel; LOW-CYCLE FATIGUE; TEMPERATURE; BEHAVIOR; LIFE; ENVIRONMENTS; MECHANISMS; INITIATION; DEFLECTION; PRESSURE;
D O I
10.5006/2647
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Forged Type 316NG austenitic stainless steel is commonly used to fabricate primary coolant pipe in advanced pressurized water reactor systems, but it is subject to corrosion fatigue cracking in primary coolant environments. In this study, the fatigue crack growth of Type 316NG austenitic stainless steel in 325 degrees C water was investigated. The corrosion fatigue effect in 325 degrees C water was mainly correlated to the crack growth rate and load frequency. A maximum F-en (environment corrected factor) value up to 100 was observed at f = 0.005 Hz, Delta K = 13 MPa root m. The dissolved oxygen tended to have little influence on the fatigue crack growth. The crack path was deflected and branched. Most secondary cracks tended to be initiated from grain boundaries.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [21] Effects of water chemistry and loading conditions on stress corrosion cracking of cold-rolled 316NG stainless steel in high temperature water
    Lu, Zhanpeng
    Shoji, Tetsuo
    Meng, Fanjiang
    Qiu, Yubing
    Dan, Tichun
    Xue, He
    CORROSION SCIENCE, 2011, 53 (01) : 247 - 262
  • [22] STAGE-I CORROSION FATIGUE CRACK CRYSTALLOGRAPHY IN AUSTENITIC STAINLESS-STEEL (316L)
    FONG, C
    TROMANS, D
    METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1988, 19 (11): : 2765 - 2773
  • [23] Fatigue crack growth in 316L stainless steel
    Wheatley, G
    Niefanger, R
    Estrin, Y
    Hu, XZ
    FRACTURE AND STRENGTH OF SOLIDS, PTS 1 AND 2: PT 1: FRACTURE MECHANICS OF MATERIALS; PT 2: BEHAVIOR OF MATERIALS AND STRUCTURE, 1998, 145-9 : 631 - 636
  • [24] FATIGUE CRACK INITIATION MODEL OF TYPE 316 STAINLESS STEEL
    Ishizawa, Terushi
    Nakamura, Takao
    Kitada, Takanori
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2016, VOL 5, 2017,
  • [25] FATIGUE CRACK GROWTH IN AUSTENITIC STAINLESS-STEEL WELDS
    SHAHINIA.P
    SMITH, HH
    REPORT OF NRL PROGRESS, 1972, (JAN): : 21 - +
  • [26] Effect of oxidation behavior on the corrosion fatigue crack initiation and propagation of 316LN austenitic stainless steel in high temperature water
    Wu, H. C.
    Yang, B.
    Wang, S. L.
    Zhang, M. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 633 : 176 - 183
  • [27] Influence of PWR primary coolant environment on corrosion fatigue crack growth of austenitic stainless steel
    Tice, David
    Platts, Norman
    Rigby, Keith
    Stairmand, John
    Swan, David
    Proceedings of the ASME Pressure Vessels and Piping Conference - 2005, Vol 1, 2005, : 193 - 205
  • [28] A NOTE ON THE CREEP CRACK-GROWTH IN TYPE-316 STAINLESS-STEEL
    RADHAKRISHNAN, VM
    INTERNATIONAL JOURNAL OF FRACTURE, 1984, 25 (03) : R69 - R75
  • [29] Effect of carburizing on fatigue behaviour in a type 316 austenitic stainless steel
    Tokaji, K.
    Akita, M.
    COMPUTER METHODS AND EXPERIMENTAL MEASUREMENTS FOR SURFACE EFFECTS AND CONTACT MECHANICS VIII, 2007, 55 : 53 - +
  • [30] INFLUENCE OF PWR ENVIRONMENT ON FATIGUE CRACK INITIATION AND GROWTH OF TYPE 316 STAINLESS STEEL
    Fujikawa, Ryosuke
    Abe, Shigeki
    Nakamura, Takao
    Kamaya, Masayuki
    ASME PRESSURE VESSELS AND PIPING CONFERENCE - 2015, VOL 1A, 2015,