Quality assessment of gene expression data

被引:0
|
作者
Tsai, CA [1 ]
Chen, DT [1 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the escalating amount of gene expression data being produced by microarray technology, one of important issues in the analysis of expression data is quality assessment, in which we want to know whether the one chip is artifactually high or low intensity relative to the majority of the chip. We propose a graphical tool implemented in R for visualizing distributions of two gene chips. Moreover, a statistical test based on chi-square test is employed to quantify degrees of array comparability for pairwise comparisons on a large number of arrays.
引用
收藏
页码:49 / 51
页数:3
相关论文
共 50 条
  • [41] Measuring Data Quality for Ongoing Improvement: A Data Quality Assessment Framework
    Engemann, Krista
    BENCHMARKING-AN INTERNATIONAL JOURNAL, 2014, 21 (03)
  • [42] Improving Cancer Gene Expression Data Quality through a TCGA Data-Driven Evaluation of Identifier Filtering
    McDade, Kevin K.
    Chandran, Uma
    Day, Roger S.
    CANCER INFORMATICS, 2015, 14 : 149 - 161
  • [43] Gene class expression: analysis tool of Gene Ontology terms with gene expression data
    Pereira, Gislaine S. P.
    Brandao, Rodrigo M.
    Giuliatti, Silvana
    Zago, Marco A.
    Silva, Wilson A., Jr.
    GENETICS AND MOLECULAR RESEARCH, 2006, 5 (01) : 108 - 114
  • [44] Quality management in gene expression analysis
    Silbermann, Jascha
    Weinert, Stefan
    Frohme, Marcus
    CHIMICA OGGI-CHEMISTRY TODAY, 2010, 28 (06) : 10 - 13
  • [45] Quality control of gene expression in the nucleus
    Custódio, N
    Carmo-Fonseca, M
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2001, 5 (03) : 267 - 275
  • [46] Quality Measures for Gene Expression Biclusters
    Pontes, Beatriz
    Girldez, Ral
    Aguilar-Ruiz, Jess S.
    PLOS ONE, 2015, 10 (03):
  • [47] Integration of Data from Orthogonal Testing for Continuous Quality Assessment of a Somatic Cancer Gene Panel
    Eckel, A. M.
    Long, T.
    Gow, E. L.
    Hempelmann, J.
    Pritchard, C. C.
    JOURNAL OF MOLECULAR DIAGNOSTICS, 2019, 21 (06): : 1219 - 1219
  • [48] Predicting gene function through systematic analysis and quality assessment of high-throughput data
    Kemmeren, P
    Kockelkorn, TTJP
    Bijma, T
    Donders, R
    Holstege, FCP
    BIOINFORMATICS, 2005, 21 (08) : 1644 - 1652
  • [49] Identifying Gene Interaction Enrichment for Gene Expression Data
    Zhang, Jigang
    Li, Jian
    Deng, Hong-Wen
    PLOS ONE, 2009, 4 (11):
  • [50] Incorporating gene ontology in clustering gene expression data
    Kustra, Rafal
    Zagdanski, Adam
    19TH IEEE INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2006, : 555 - +