Bending solutions of FGM Timoshenko beams from those of the homogenous Euler-Bernoulli beams

被引:42
|
作者
Li, Shi-Rong [1 ,2 ]
Cao, Da-Fu [1 ]
Wan, Ze-Qing [1 ,2 ]
机构
[1] Yangzhou Univ, Sch Civil Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[2] Yangzhou Univ, Sch Hydraul Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Functionally graded material; Timoshenko beam; Euler-Bernoulli beam; Bending solution; PLATES; TERMS;
D O I
10.1016/j.apm.2013.02.047
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using mathematical similarity and load equivalence between the governing equations, bending solutions of FGM Timoshenko beams are derived analytically in terms of the homogenous Euler-Bernoulli beams. The deflection, rotational angle, bending moment and shear force of FGM Timoshenko beams are expressed in terms of the deflection of the corresponding homogenous Euler-Bernoulli beams with the same geometry, the same loadings and end constraints. Consequently, solutions of bending of the FGM Timoshenko beams are simplified as the calculation of the transition coefficients which can be easily determined by the variation law of the gradient of the material properties and the geometry of the beams if the solutions of corresponding Euler-Bernoulli beam are known. As examples, solutions are given for the FGM Timoshenko beams under S-S, C-C, C-F and C-S end constraints and arbitrary transverse loadings to illustrate the use of this approach. These analytical solutions can be as benchmarks in the further investigations of behaviors of FGM beams. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:7077 / 7085
页数:9
相关论文
共 50 条
  • [41] Chaotic dynamics of flexible Euler-Bernoulli beams
    Awrejcewicz, J.
    Krysko, A. V.
    Kutepov, I. E.
    Zagniboroda, N. A.
    Dobriyan, V.
    Krysko, V. A.
    CHAOS, 2013, 23 (04)
  • [42] Bayesian parameter estimation of Euler-Bernoulli beams
    Ardekani, Iman T.
    Kaipio, Jari
    Sakhaee, Neda
    Sharifzadeh, Hamid
    TENTH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING SYSTEMS, 2019, 2019, 11071
  • [43] Fragile points method for Euler-Bernoulli beams
    Malla, Abinash
    Natarajan, Sundararajan
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [44] Stability of a complex network of Euler-Bernoulli beams
    Tianjin University, Department of Mathematics, Tianjin 300072, China
    不详
    WSEAS Trans. Syst., 2009, 3 (379-389):
  • [45] Coupled Bending and Axial Vibrations of Axially Functionally Graded Euler-Bernoulli Beams
    Tomovic, Aleksandar
    Salinic, Slavisa
    Obradovic, Aleksandar
    Zoric, Nemanja
    Mitrovic, Zoran
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (03) : 2987 - 3004
  • [46] Closed-form solutions for Euler-Bernoulli arbitrary discontinuous beams
    Failla, Giuseppe
    ARCHIVE OF APPLIED MECHANICS, 2011, 81 (05) : 605 - 628
  • [47] Stabilization of a Triangle Network of Euler-Bernoulli Beams
    Zhang Kuiting
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 6142 - 6147
  • [48] Passivity analysis of Nonlinear Euler-Bernoulli beams
    Fard, MP
    MODELING IDENTIFICATION AND CONTROL, 2002, 23 (04) : 239 - 258
  • [49] Spectrum of A complex Network of Euler-Bernoulli Beams
    Zhang, KuiTing
    Xu, Gen Qi
    Mastorakis, Nikos E.
    PROCEEDINGS OF THE 15TH AMERICAN CONFERENCE ON APPLIED MATHEMATICS AND PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES 2009, VOLS I AND II, 2009, : 120 - +
  • [50] Doublet mechanical analysis of bending of Euler-Bernoulli and Timoshenko nanobeams
    Ebrahimian, M. R.
    Imam, A.
    Najafi, M.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2018, 98 (09): : 1642 - 1665