Weighted Multi-Class Support Vector Machine for Robust Face Recognition

被引:0
|
作者
Chowdhury, Shiladitya [1 ]
Sing, Jamuna Kanta [2 ]
Basu, Dipak Kumar [2 ]
Nasipuri, Mita [2 ]
机构
[1] Techno India, Dept Master Comp Applicat, Kolkata, India
[2] Jadavpur Univ, Dept Comp Sci & Engn, Kolkata 700032, W Bengal, India
关键词
Generalized two-dimensional FLD; Feature extraction; Face recognition; Weighted Multi-class SVM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel scheme for face recognition using Weighted Multi-class Support Vector Machine (WMSVM). Support Vector Machine (SVM) is well-known powerful tool for solving classification problem. Weighted Support Vector Machines (Weighted SVM) are extension of the SVM. It has been seen that different input vectors make different contribution to the learning of a decision surface. Therefore, different weights are assigned to different data points, so that the Weighted SVM training algorithm learns the decision surface according to the relative importance of data points in the training data. In our proposed WMSVM, probabilistic method is used for weight generation. The generalized two-dimensional Fisher's linear discriminant (G-2DFLD)-based facial features are applied on the proposed WMSVM for recognition. The experimental results on UMIST and AR face database show that the proposed Weighted Multi-class SVM yields higher recognition rate than standard Multi-class SVM.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 50 条
  • [41] Hierarchical support vector machines for multi-class pattern recognition
    Schwenker, Friedhelm
    International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 2000, 2 : 561 - 565
  • [42] Multiple birth support vector machine for multi-class classification
    Zhi-Xia Yang
    Yuan-Hai Shao
    Xiang-Sun Zhang
    Neural Computing and Applications, 2013, 22 : 153 - 161
  • [43] Fuzzy support vector machine for multi-class text categorization
    Wang, Tai-Yue
    Chiang, Huei-Min
    INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (04) : 914 - 929
  • [44] Multiple birth support vector machine for multi-class classification
    Yang, Zhi-Xia
    Shao, Yuan-Hai
    Zhang, Xiang-Sun
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 : S153 - S161
  • [45] Feature selection with kernelized multi-class support vector machine
    Guo, Yinan
    Zhang, Zirui
    Tang, Fengzhen
    PATTERN RECOGNITION, 2021, 117
  • [46] A novel fuzzy compensation multi-class support vector machine
    Yong Zhang
    Zhong-xian Chi
    Xiao-dan Liu
    Xiang-hai Wang
    Applied Intelligence, 2007, 27 : 21 - 28
  • [47] A novel fuzzy compensation multi-class support vector machine
    Zhang, Yong
    Chi, Zhong-xian
    Liu, Xiao-dan
    Wang, Xiang-hai
    APPLIED INTELLIGENCE, 2007, 27 (01) : 21 - 28
  • [48] Multi-class classification algorithm based on Support Vector Machine
    Yang Kuihe
    Yuan Min
    7TH INTERNATIONAL CONFERENCE ON MEASUREMENT AND CONTROL OF GRANULAR MATERIALS, PROCEEDINGS, 2006, : 322 - 325
  • [49] Two multi-class lagrangian support vector machine algorithms
    Duan, Hua
    Liu, Quanchang
    He, Guoping
    Zeng, Qingtian
    ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF ARTIFICIAL INTELLIGENCE, 2007, 4682 : 891 - 899
  • [50] Multi-class support vector machine classifier in EMG diagnosis
    Kaur, Gurmanik
    Arora, Ajat Shatru
    Jain, V.K.
    WSEAS Transactions on Signal Processing, 2009, 5 (12): : 379 - 389