Brain-Machine Interface Control of a Robot Arm using Actor-Critic Reinforcement Learning

被引:0
|
作者
Pohlmeyer, Eric A. [1 ]
Mahmoudi, Babak [1 ]
Geng, Shijia [1 ]
Prins, Noeine [1 ]
Sanchez, Justin C. [1 ]
机构
[1] Miami Univ, Dept Biomed Engn, Coral Gables, FL 33146 USA
关键词
COMPUTER INTERFACE; MOVEMENT SIGNAL; RULE;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortex to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94 %) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.
引用
收藏
页码:4108 / 4111
页数:4
相关论文
共 50 条
  • [31] Control of a 2 DoF robot using a Brain-Machine Interface
    Hortal, Enrique
    Ubeda, Andres
    Ianez, Eduardo
    Azorin, Jose M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2014, 116 (02) : 169 - 176
  • [32] Visual Navigation with Actor-Critic Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Zhu, Yuanheng
    Zhang, Qichao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [33] Reinforcement learning with actor-critic for knowledge graph reasoning
    Zhang, Linli
    Li, Dewei
    Xi, Yugeng
    Jia, Shuai
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (06)
  • [34] Actor-critic reinforcement learning for bidding in bilateral negotiation
    Arslan, Furkan
    Aydogan, Reyhan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1695 - 1714
  • [35] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli Zhang
    Dewei Li
    Yugeng Xi
    Shuai Jia
    Science China Information Sciences, 2020, 63
  • [36] A Sandpile Model for Reliable Actor-Critic Reinforcement Learning
    Peng, Yiming
    Chen, Gang
    Zhang, Mengjie
    Pang, Shaoning
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4014 - 4021
  • [37] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli ZHANG
    Dewei LI
    Yugeng XI
    Shuai JIA
    ScienceChina(InformationSciences), 2020, 63 (06) : 223 - 225
  • [38] Coverage Path Planning Using Actor-Critic Deep Reinforcement Learning
    Garrido-Castaneda, Sergio Isahi
    Vasquez, Juan Irving
    Antonio-Cruz, Mayra
    SENSORS, 2025, 25 (05)
  • [39] A multi-agent reinforcement learning using Actor-Critic methods
    Li, Chun-Gui
    Wang, Meng
    Yuan, Qing-Neng
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 878 - 882
  • [40] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139