A COLOR DIFFERENTIATED FUZZY C-MEANS (CDFCM) BASED IMAGE SEGMENTATION ALGORITHM

被引:0
|
作者
Tsai, Min-Jen [1 ]
Chang, Hsuan-Shao [1 ]
机构
[1] Natl Chiao Tung Univ, Inst Informat Management, Hsinchu, Taiwan
关键词
image segmentation; color differentiated fuzzy c-means (CDFCM); SPATIAL CONSTRAINTS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation is a very important process in digital image/video processing and computer vision applications. It is often used to partition an image into separated parts for further processes. For some applications (i.e., concept-based image retrieval), a successful segmentation algorithm is necessary to identity the objects effectively. In addition, how to tag the objects after the segmentation associated with keywords is also a challenge for researchers. In this study, we proposed a color differentiated fuzzy c-means (CDFCM) framework for effective image segmentation to achieve segmented objects within image which is useful for further annotation. In our experiments, we compared our approach with other FCM techniques on synthetic image with excellent performance. Furthermore, CDFCM outperforms other approaches by using the Berkeley image segmentation data set with layered annotation, which can be applied for additional operations.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] SAR Image Unsupervised Segmentation Based on A Modified Fuzzy C-means Algorithm
    Hu, Yuanyuan
    Fan, Jianchao
    Wang, Jun
    2016 SIXTH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2016, : 520 - 523
  • [42] Segmentation for brain MRI image based on the fuzzy c-means clustering algorithm
    Yin, Xi
    Li, Yimin
    Li, Feng
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1177 - 1182
  • [43] Color image segmentation using fuzzy C-means and eigenspace projections
    Yang, JF
    Hao, SS
    Chung, PC
    SIGNAL PROCESSING, 2002, 82 (03) : 461 - 472
  • [44] Color Image Segmentation Using Kernalized Fuzzy C-means Clustering
    Mahajan, Sneha M.
    Dubey, Yogita K.
    2015 FIFTH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT2015), 2015, : 1142 - 1146
  • [45] Fuzzy C-Means Clustering with Spatial Information for Color Image Segmentation
    Jaffar, M. Arfan
    Naveed, Nawazish
    Ahmed, Bilal
    Hussain, Ayyaz
    Mirza, Anwar M.
    2009 THIRD INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, 2009, : 136 - 141
  • [46] Using Fuzzy c-Means Cluster for Histogram-Based Color Image Segmentation
    Huang, Zhi-Kai
    Xie, Yun-Ming
    Liu, De-Hui
    Hou, Ling-Ying
    2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, VOL 1, PROCEEDINGS, 2009, : 597 - 600
  • [47] Robust Color Image Segmentation Method Based on Weighting Fuzzy C-Means Clustering
    Li, Yujie
    Lu, Huimin
    Wang, Yingying
    Zhang, Lifeng
    Yang, Shiyuan
    Serikawa, Seiichi
    2012 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII), 2012, : 133 - 137
  • [48] Color Image Segmentation Based on Decision-Theoretic Rough Set Model and Fuzzy C-Means Algorithm
    Guo, Min
    Shang, Lin
    2014 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2014, : 229 - 236
  • [49] Superpixel-Based Fast Fuzzy C-Means Clustering for Color Image Segmentation
    Lei, Tao
    Jia, Xiaohong
    Zhang, Yanning
    Liu, Shigang
    Meng, Hongying
    Nandi, Asoke K.
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (09) : 1753 - 1766
  • [50] Medical Image Segmentation based on Improved Ant Colony Algorithm and Fuzzy C-means Algorithm
    Gao, Xueshan
    Rong, Zhinan
    Wang, Shigang
    2nd International Conference on Sensors, Instrument and Information Technology (ICSIIT 2015), 2015, : 400 - 404